

http://intevation.de

WSPLGEN (Wasser SPiegelLagen GENerator)

Dokumentation

Version 1.1.5 - Datum: 11. November 2007

Revision 93

Autor WSPLGEN: Ulrich Kiel <u.kiel@S-L-F.de>

STADT-LAND-FLUSS INGENIEURDIENSTE GmbH,

Auf dem Hollen 12, 30165 Hannover

Tel: 0511/353196-02, Fax: 0511/353196-09

Inhaltsverzeichnis

1	Allg	emeines
2	Vorg	gehensweise
	2.1	Schritt I - Auswertung der Kommandozeilenparameter
	2.2	Schritt II - Einlesen der Eingabedateien
		2.2.1 Gewässerachse
		2.2.2 Gewässerquerprofilspuren
		2.2.3 Wasserstände
		2.2.4 Dämme, Gräben, Rohre (optional)
		2.2.5 Begrenzungspolgon
		2.2.6 Digitales Geländemodell (DGM)
	2.3	Schritt III - Triangulierung (optional)
	2.4	Schritt IV - Gräben und Dämme (optional)
	2.5	Schritt V - Verdichtung der Wasserstände
	2.6	Schritt VI - Übertragung der Wasserstände auf das DGM
	2.7	Schritt VII - Extrapolation der Wasserstände
	2.8	Schritt VIII - Generierung der Isolinien gleicher Wasserstände
	2.9	Schritt IX - Schreiben der Ausgabedateien
	-	
3	Kon	nmandozeilen Parameter
	3.1	OUTPUT (Ausgabeoptionen)
	3.2	PAR (Parameterdatei)
	3.3	DELTA (Abstufungen der Wassertiefen)
	3.4	GEL (Einfluss von Geländeerhebungen)
	3.5	DGM (Digitales Geländemodell)
	3.6	PRO (Profilspuren)
	3.7	STRECKE (Begrenzung des Berechnungsstrecke)
	3.8	DIST (gewünschter Abstand der interpolierten Profile)
	3.9	WSP (Wasserstände)
	3.10	WSPTAG (Spaltenbeschreibung der Wasserstände im WST-Format)
		LIN ("Dämme", "Gräben" und "Rohe")
		ACHSE (Gewässerachse)
		GEBIET (hydraulisch relevante Grenze)
		SAVETRI (Speichern der Triangulierung)
		AUSGABE (Ausgabedatei)
		? (Versionsnummer)
4	Zwir	ngend erforderliche Eingabedateien
	4.1	Digitales Geländemodell (DGM)
		4.1.1 ASCII-Format mit X,Y,Z-Tripeln
		4.1.2 ESRI ASCII Raster-Datei-Format
		4.1.3 ESRI TIN-Format
		4.1.4 ESRI-POINT-Shape-Format
		4.1.5 2DM-Format
	4.2	Profilspuren

	4.3	Wasserstände 4.3.1 ASCII-Format 4.3.2 DBF-Format 4.3.3 WST-Format	32 33 33 33	
	4.4	Gewässerachse	35	
5		ionale Eingabedateien	36	
	5.1	Linienobjekte	36	
	5.2	Hydraulisch relevante Grenze	36	
6	Rüc	kgabewerte	38	
7	Aus	gabedateien	39	
	7.1	Ergebnisse	39	
	7.2	Metadaten	39	
	7.3	Fortschritt	40	
	7.4	Warnungen und Fehler	41	
8	Zus	ammenfassung	42	
Α	Para	ameter	43	
В	Feh	lermeldungen	44	
_	B.1	Kein Fehler	44	
	B.2	Fehlergruppe 1xxx - Parameterauswertung	44	
	B.3	Fehlergruppe 2xxx - Eingabedateifehler	47	
	B.4	Fehlergruppe 3xxx - Datenfehler	50	
	B.5	Ausgabedateifehler: Fehlergruppe 4xxx	52	
	B.6	Sonstige Fehler: Fehlergruppe 9xxx	52	
С	Änd	lerungen	54	
D	Bek	annte Probleme bzw. Schwächen	57	
Α	bbi	Idungsverzeichnis		
	1	Lage von drei Gewässerquerprofilen	7	
	2	Bildung einer automatischen Begrenzung aus Querprofilstützpunkten	7	
	3	Funktionsweise der verschiedenen Rohr-Typen	8	
	4	Ein ganz kleiner Ausschnitt aus einem DGM als vermaschtes Netz	9	
	5	Bildung eines Begrenzungspolygons	9	
	6	Delauny-Triangulation	10	
	7	Eine "fast Delauny-Triangulation"	11	
	8	Löschen der Wächterknoten	11	
	9	Löschen von deutlich ausserhalb liegenden Kanten	11	
	10	"Herausheben" bzw. "Einschneiden" der Dämme bzw. Gräben	12	
	11	Konstruktion und Lage der interpolierten Gewässerquerprofile	13	

12	Vorgegebene und interpolierte Wasserstände	13
13	Zuordnung der Wasserstände zu den Punkten des DGM	14
14	Zuordnung der Wasserstände zu den Punkten des DGM unter Berücksichtigung der	
	aktuellen Topographie	15
15	Zuordnung der Wasserstände zu den Punkten des DGM unter Berücksichtigung der	
	Dämme	15
16	Extrapolation der Wasserstände zu den Punkten des DGM	16
17	Ermittlung des Nass/Trocken-Überganges	17

S-L-F GmbH

1 Allgemeines

Das Programm WSPLGEN erzeugt Dateien im ESRI Shape Format, um eine flächige Darstellung der Ergebnisse eindimensionaler mathematischer Modelle zur Berechnung von Wasserständen zu ermöglichen. Es kann das aktuelle oder das potenzielle Überschwemmungsgebiet (Ü-Gebiet) ermittelt werden oder ein von der aktuellen Topographie abweichendes Szenario für die Berechnungen herangezogen werden.

Es ist als eigenständiges Programm realisiert und kann von einer Bedieneroberfläche (Graphic-User-Interfaces, GUI) aufgerufen werden.

Die Eingabedaten werden in der grafischen Bedieneroberfläche definiert und per Kommandozeilenparameter oder Parameterdatei und über verschiedene Eingabedateien an das Programm WSPLGEN übergeben. Eine erste Überprüfung auf Vollständigkeit und Sinnhaftigkeit sollte in der GUI erfolgen, da WSPLGEN bei den meisten Problemen nur einen Fehler generiert und die Ausführung beendet oder Standardwerte benutzt, die nicht immer den eigentlichen Willen des Benutzers wiedergeben. Beim Verwenden von Standardwerten wird in jedem Fall eine Warnung generiert.

2 Vorgehensweise

2.1 Schritt I - Auswertung der Kommandozeilenparameter

Als erstes werden von WSPLGEN die Kommandozeilenparameter ausgewertet. Sollte das Programm hierbei unbekannte Parameter oder ungültige Argumente zu den Parametern finden, so wird ein Fehler generiert (siehe Anhang B). Werden Parameter mehrfach verwendet (z.B. bei der Angabe eines Parameters in der Kommandozeile und gleichzeitiger Verwendung des gleichen Parameters in der Parameterdatei (siehe Abschnitt 3.2), so wird nur das erste Auftreten berücksichtigt und eine Warnung generiert (siehe Anhang B). Die zulässigen Kommandozeilenparameter und ihre Argumente werden im Abschnitt 3 und im Anhang A beschrieben.

2.2 Schritt II - Einlesen der Eingabedateien

Die wichtigsten Kommandozeilenparameter bestimmen, welche Dateien das Programm einlesen soll und in welche Dateien es die Ausgaben schreiben soll. Wird das Programm angewiesen, eine Datei zu lesen, die nicht existiert, die aus einem anderen Grund (z.B. ungenügende Rechte) nicht gelesen werden kann oder die in einem unbekannten oder fehlerhaften Format vorliegt, so wird eine Fehlermeldung generiert (siehe Anhang B).

2.2.1 Gewässerachse

Um die Lage des Flusses innnerhalb der Profilspuren sicher ermitteln zu können, wird die Gewässerachse als Linien-SHAPE-Datei eingelesen. Es ist möglich die Achse auf verschiedene Linien zu verteilen, die aber zusammengefügt eine durchgehende Linie ergeben müssen.

2.2.2 Gewässerquerprofilspuren

Ale nächstes werden die Gewässerquerprofilspuren (im Folgenden oft nur kurz Profilspuren genannt) eingelesen. Die Profilspuren müssen, um ein korrektes Berechnungsergebnis zu gewährleisten, so lang sein, dass an ihren Enden eine Geländehöhe im DGM vorhanden ist, die sicher höher liegt, als die Wasserstände, die den Profilspuren zugeordnet werden sollen. Dies bedeutet, dass die Profilspuren die hydraulisch relevante Talaue abdecken.

An "offenen" Bereichen, d.h. dort wo die Geländeoberfläche nicht höher als die Wasserstände liegt (z.B. Nebengewässern oder den Modellgrenzen), verlaufen die Ergebnispolygone auf dem Rand des digitalen Geländemodells entlang, sie werden dort also unabhängig von der Wassertiefe geschlossen.

Zwischen dem ersten und dem letzten Punkt einer Profilspur können beliebig viele Knickpunkte liegen, um die Profilspuren aus hydraulischer Sicht sinnvoll festlegen zu können.

Als ein Attribut müssen die Profilspuren eine nummerische Gewässerstationierung aufweisen, die es ermöglicht, den Profilspuren Wasserstände zuzuweisen, die für verschiedene Stationen im Gewässer vorliegen.

Hierbei darf die Stationierung auch negative Werte enthalten.

Für die Interpolation von Querprofilen zum Verdichten der Wasserstände wird diese Stationierung nicht verwendet (siehe Abschnitt 2.5).

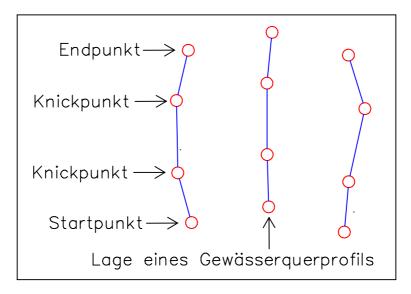


Abbildung 1: Gewässerquerprofile

Das Format der Datei mit den Profilspuren wird in Abschnitt 4.2 genauer spezifiziert.

Mit dem Parameter -STRECKE kann man den Bereich, der eingelesen werden soll, einschränken (siehe Abschnitt 3.7), ansonsten werden sämtliche Profilspuren des Gewässers vom Programm eingelesen.

Falls der Parameter -GEBIET nicht angegeben wird, wird aus den eingelesenen Stützstellen der Querprofile, ein Begrenzungspolygon für das digitale Geländemodell durch Bildung der konvexen Hülle erzeugt.

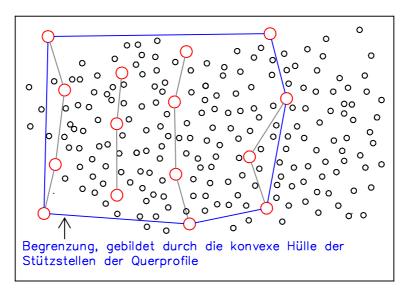


Abbildung 2: Bildung einer automatischen Begrenzung

2.2.3 Wasserstände

Als nächstes werden die Wasserstände eingelesen, die den Gewässerquerprofilen zugeordnet sind. Sollte einem Gewässerquerprofil kein Wasserstand direkt zugeordnet werden können, so wird versucht, einen Wasserstand linear aus stromauf und stromab liegenden Wasserständen zu interpolieren.

Sollte auch dies nicht möglich sein, weil entweder kein stromauf oder kein stromab liegender Wasserstand definiert wurde, so wird eine Fehlermeldung generiert (siehe Abschnitt 7.4) und das Programm beendet.

Es kann immer nur ein Wasserstand pro Profilspur verwendet werden. Sollten doch mehrere Wasserstände einer Profilspur zugeordnet sein, so wird nur der erste Wasserstand verwendet und eine entsprechende Warnung generiert (siehe Abschnitt 7.4).

2.2.4 Dämme, Gräben, Rohre (optional)

Um sowohl "Gräben", "Rohre" oder "Dämme" in einem Szenario simulieren zu können, ohne das DGM verändern zu müssen, ist es möglich, eine weitere Datei mit Polylinien im ESRI SHAPE-Format einzulesen.

In dieser Datei muss allen Polylinien das Text-Attribut "TYP" zugeordnet sein. Dieses Attribut bestimmt, ob es sich bei einer Linie um einen "Damm" handelt (Wert DAMM), also Wasser diese Linie nicht übersteigen kann, oder ob es sich um einen "Graben" handelt (Wert GRABEN), also Wasser sich entlang dieser Linie ausbreiten kann.

Weiterhin können noch als Attributwert ROHR1 und ROHR2 verwendet werden.

Ein "Rohr" vom Typ 1 transportiert einen Wasserstand vom Beginn einer Linie an das andere Ende der Linie. Man kann also mit ihm, ohne sich um die Linienführung Sorgen zu machen, einen Wasserstand in ein sonst nicht erreichbares "trockenes" Gebiet transportieren.

Ein "Rohr" vom Typ 2 transportiert einen Wasserstand von Beginn einer Linie an alle Stützstellen der Linie. Man kann mehrere Linien des Typs ROHR2 dazu verwenden, einen künstlichen Gradienten in einem Nebenarm oder einen sekundären Fließpfad eines Gewässers zu erzeugen.

Alle diese Linienobjekte können nicht zusammen mit dem Parameter -GEL=NOSPERRE (also dem potenziellen Ü-Ggebiet) verwendet werden (siehe Abschnitt 3.4).

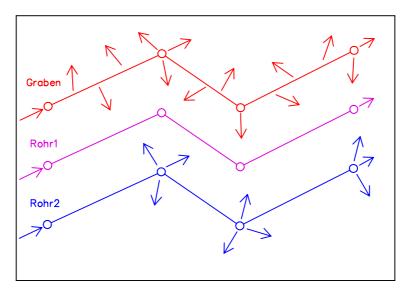


Abbildung 3: Funktionsweise der Rohre

2.2.5 Begrenzungspolgon

Da es vorkommen kann, dass die Profilspuren nicht weit genug in das DGM hineinreichen und damit das automatisch gebildete Begrenzungspolygon nicht ausreichend groß wäre, um sinnvolle Ergebnispolygone zu produzieren, kann man ein Begrenzungpolygon auch direkt einlesen lassen. Hierzu wird der Parameter –GEBIET verwendet (siehe Abschnitt 3.13).

Wir ein Begrenzungspolygon eingelesen, so spielen die Stützstellen der Profilspuren keine Rolle mehr.

Zu beachten ist, dass nur das erste Polygon einer Shape-Datei und davon auch nur der erste Ring (der normalerweise ein äußerer Ring sein sollte) berücksichtigt werden.

2.2.6 Digitales Geländemodell (DGM)

Zum Schluss wird das digitale Geländemodell (DGM) eingelesen, das durch seine Größe auch gleichzeitig die maximal mögliche Ausdehnung des Ergebnisses festlegt. Das DGM muss für die weitere Bearbeitung als vermaschtes Netz vorliegen.

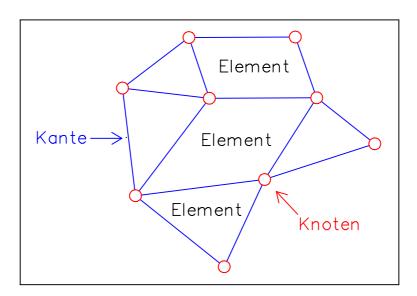


Abbildung 4: Ausschnitt eines DGM als vermschtes Netz

Die verschiedenen möglichen Formate des DGM werden in Abschnitt 4.1 genauer spezifiziert. Wird ein Format für das DGM gewählt, das kein vermaschtes Netz darstellt (z.B. eine ASCII-Datei mit X,Y,Z-Tripeln), so wird nach dem Einlesen der Punkte eine automatische Triangulierung durchgeführt (siehe Schritt III in Abschnitt 2.3). Das Ergebnis der Triangulierung kann auch gespeichert werden (siehe Abschnitt 3.14).

Aus Optimierungsgründen wird das DGM nur für den Bereich eingelesen, der durch ein Polygon begrenzt ist, das aus den den Profilen gebildet wird oder mit dem Parameter GEBIET eingelesen wird.

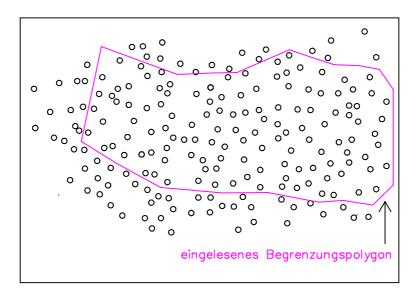


Abbildung 5: Begrenzungspolygon

2.3 Schritt III - Triangulierung (optional)

Wird das DGM nicht in einem Format zur Verfügung gestellt, das ein vermaschtes Netz repräsentiert, sondern nur unabhängige Knoten, so wird von WSPLGEN ein vermaschtes Netz erzeugt, das die Kriterien einer Delaunay-Triangulation erfüllt.

Dabei darf **im** Umkreis jedes gebildeten Dreiecks kein weiterer Knoten liegen. **Auf** dem Umkreis dürfen beliebig viele Knoten liegen.

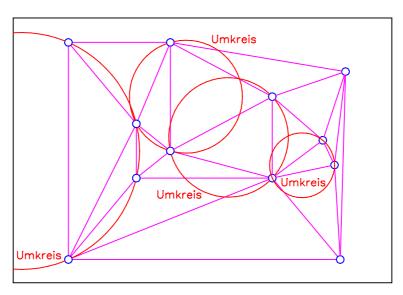


Abbildung 6: Delauny-Triangulation

Aus Optimierungsgründen werden vor der eigentlichen Triangulierung, die das Delauny-Kriterium erfüllt, noch 4 Wächterknoten eingefügt. Diese Knoten bilden ein Rechteck, das alle Punkte des DGM einschließt und dessen Kanten doppelt so groß sind, wie die eigentliche horizontale bzw. vertikale Ausdehnung des DGM. Da die Wächterknoten nach der Triangulation wieder entfernt werden, erfüllt die Triangulation das Delauny-Kriterium in den meisten Fällen nicht mehr.

Dies ist kein Fehler, sondern kann sich in vielen Fällen als vorteilhaft herausstellen, da so oft sehr längliche und spitze Elemente vermieden werden, die bei der weiteren Vorgehensweise zu Problemen führen können.

(Bemerkung: In den folgenden Abbildungen sind die Wächterknoten dichter an dem eigentlichen DGM, als es im Programm realisiert ist. Dies hat nur darstellerische Gründe und ändert nichts an dem angewandten Prinzip.)

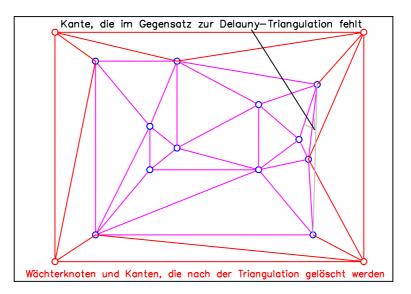


Abbildung 7: Eine fast Delauny-Triangulation

Anschließend werden zusätzlich noch alle Kanten entfernt, deren Mittelpunkt ausserhalb des Begrenzungspolygons liegen. Bei diesem Verfahren kann es vorkommen, dass Kanten, die das Begrenzungspolygon streckenweise verlassen, nicht gelöscht werden, doch kann dies im Hinblick auf das berechnete Ü-Gebiet vernachlässigt werden.

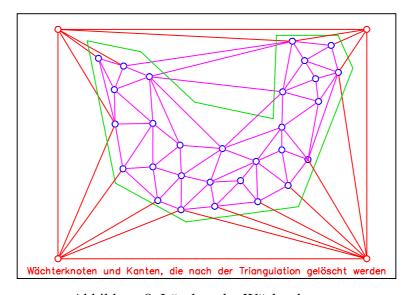


Abbildung 8: Löschen der Wächterknoten

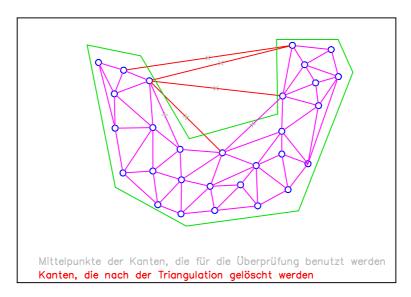


Abbildung 9: Löschen von externen Kanten

2.4 Schritt IV - Gräben und Dämme (optional)

Nachdem das DGM in jedem Fall trianguliert ist, werden aus dem Netz zuerst die Dämme "herausgehoben", wenn eine Shape-Datei mit den entsprechend attributierten Linien eingelesen wurde. Anschließend werden die Gräben in das Netzt "geschnitten", wobei möglicherweise auch Dämme wieder mit eingeschnitten werden.

Sowohl die Dämme als auch die Gräben werden in den Ergebnissen nur eine sehr geringe Breite aufweisen.

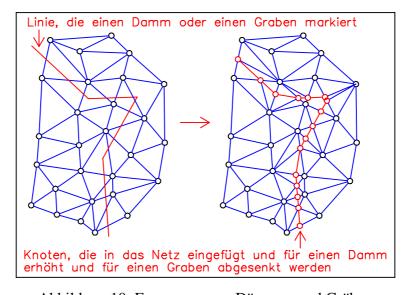


Abbildung 10: Erzeugung von Dämmen und Gräben

2.5 Schritt V - Verdichtung der Wasserstände

Es wird von sinnvoll geknickten Profilspuren ausgegangen, die ein lineares Interpolieren von zusätzlichen Profilspuren zwischen den verhandenen Profilspuren ermöglichen.

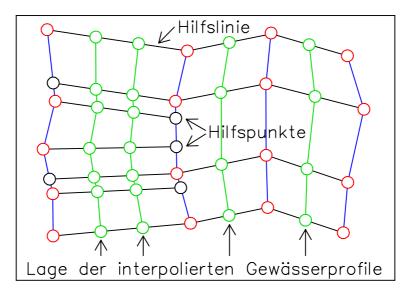


Abbildung 11: Interpolierte Lage von Gewässerquerprofilen

Als sinnvoller Wert für den Abstand der interpolierten Profilspuren, wird der zweifache mittlere Abstand der Knoten im DGM benutzt. Wenn das DGM also großmaschig ist, werden weniger Profilspuren interpoliert, als wenn das DGM feinmaschiger ist.

Um den gewünschten Abstand der zu interpolierenden Profile genauer bestimmen zu können, kann man ihn auch mit dem Parameter -DIST=<Abstand> angeben. Es werden dann so viele neue Profile zwischen bestehende Profile interpoliert, wie "(alter Abstand geteilt durch gewünschter Abstand) minus eins auf die nächste ganze Zahl gerundet" ergibt.

Zum Beispiel würde bei einem Abstand von 0,350 km und einem gewünschten Abstand von 0,200 km ein neues Profil interpoliert.

Für jede interpolierte Profilspur wird ein Wasserstand aus den Wasserständen ermittelt, die den Profilspuren zugewiesen wurden, die auch für die Interpolation der Profilspuren selbst dienten. Dabei wird der tatsächliche Abstand der Profile (definiert durch die Gewässerachse) und nicht die Stationierung der Profile verwendet.

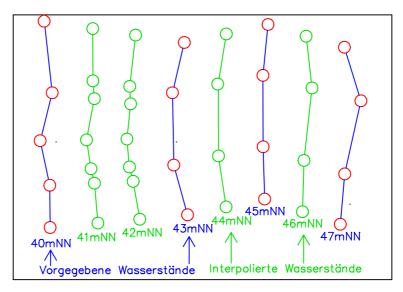


Abbildung 12: Interpolierte Wasserstände

2.6 Schritt VI - Übertragung der Wasserstände auf das DGM

Nachdem für eine ausreichende Zahl von Profilspuren die Wasserstände festgelegt wurden, werden die Wasserstände auf das DGM übertragen. Dabei wird zunächst für jedes Profil der Schnittpunkt mit der Gewässerachse bestimmt (in der Abbildung mit einem kleinen schwarzer Punkt markiert) und danach der diesem Schnittpunkt am dichtesten liegende Knoten des DGM gesucht (die Knoten sind in der folgenden Abbildung mit einer 1 beschriftet.

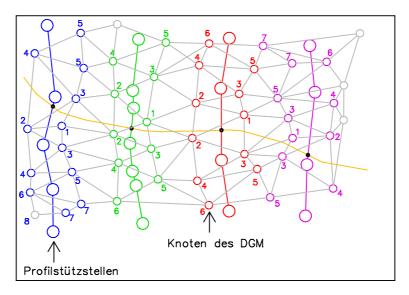


Abbildung 13: Zuordnung der Wasserstände

Von diesen ersten Knoten wird der Wasserstand immer wieder auf die andere Seite der jeweiligen Profile übertragen. Die Reihenfolge kann man anhand der Numerierung der Knoten erkennen.

Eine Zuordnung des Wasserstandes erfolgt aber nur dann, wenn die Geländehöhe der DGM-Knoten niederiger ist als der Wasserstand des jeweiligen Profils. Auf diese Weise wird bereits eine erste Klassifizierung in nasse oder trockene Punkte durchgeführt.

Soll statt des potenziellen Ü-Gebietes, das aktuelle Ü-Gebiet oder ein Szenario mit "Dämmen", "Gräben" oder "Rohren" (vgl. 3.4) ermittelt werden, so wird der Übertragungsprozess nur so lange fortgsetzt, bis ein Profil-Punkt eine Geländehöhe aufweist, die höher als der zu übertragende Wasserstand ist.

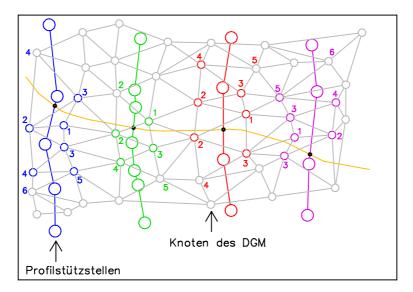


Abbildung 14: Zuordnung der Wasserstände (Erzeugung aktuelles Ü-Gebiet)

Wenn eine Datei mit Linienobjekten verwendet wird, so werden jetzt zusätzlich noch die Polylinien, die in der entsprechenden Datei als DAMM, ROHR1 oder ROHR2 gekennzeichnet sind, ausgewertet.

Handelt es sich um Dämme, so wird vor dem weiterreichen überprüft, ob die Kante, die das Wasser weiterreichen würde, einen Damm schneidet.

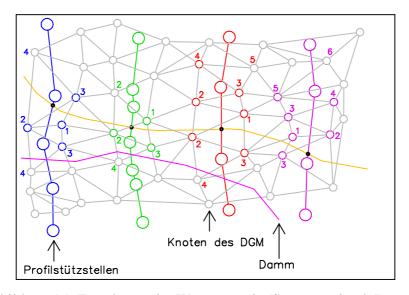


Abbildung 15: Zuordnung der Wasserstände (Sperrung durch Dämme)

Wird ein Rohr vom Typ 1 verwendet, so wird für den ersten Punkt der Linie ein Wasserstand aus den umliegenden Profilspuren wie für einen DGM-Punkt interpoliert und dieser Wasserstand an dem Ende der "Rohrlinie" angenommen. Anschließend wird allen DGM-Punkten, die dichter als der Suchradius

von dem Ende der "Rohrlinie" entfernt sind, dieser Wasserstand zugewiesen, wenn ihre Geländehöhe niedriger als dieser Wasserstand ist.

Wird eine Rohr vom Typ 2 verwendet, so wird für den ersten Punkt der Linie ein Wasserstand aus den umliegenden Profilspuren wie für einen DGM-Punkt interpoliert und dieser Wasserstand für alle Stützstellen des "Rohres" angenommen. Anschließend wird allen DGM-Punkten, die dichter als der Suchradius von den Stützstellen des "Rohres" entfernt sind, dieser Wasserstand zugewiesen, wenn ihre Geländehöhe niedriger als dieser Wasserstand ist.

Ab diesem Schritt spielen die Profilspuren keine Rolle mehr. Es wird nur noch mit dem DGM und den zugeordneten Wasserständen gearbeitet.

2.7 Schritt VII - Extrapolation der Wasserstände

Die Extrapolation der Wasserstände, die auf das DGM übertragen wurden, erfolgt iterativ entlang der verbindenden Kanten zwischen den Knoten des DGM (vgl. Schritt II in Abschnitt 2.2.6).

Bei jeder Iteration werden alle Kanten bestimmt, die einen nassen Knoten und einen Knoten ohne Wasserstand verbinden. Danach wird bei der kürzesten Kante beginnend der Wasserstand des nassen Knoten auf den bisher undefinierten Knoten übertragen, falls diesem inzwischen noch kein Wasserstand zugewiesen wurde. Die Zuweisung wird auch durchgeführt, wenn die Höhe des Knoten größer als der ihm zugewiesene Wasserstand ist. Der Knoten würde im Folgenden als trockener Knoten zählen und nicht weiter berücksichtigt werden.

Sind alle ermittelten Kanten bearbeitet, so wird diese Iteration so lange wiederholt, bis keine Kanten mehr gefunden werden, die das geforderte Kriterium erfüllen.

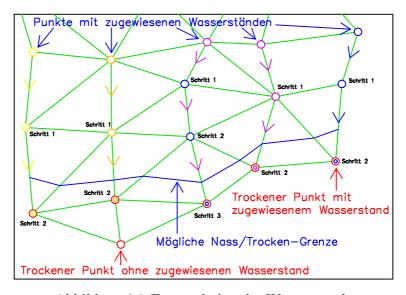


Abbildung 16: Extrapolation der Wasserstände

2.8 Schritt VIII - Generierung der Isolinien gleicher Wasserstände

In diesem Schritt brauchen nur die Kanten ermittelt zu werden, die einen nassen und einen trockenen Knoten verbinden. Es wird für jede dieser Kanten der Punkt bestimmt, der bei linearer Interpolation

der Wassertiefen gleich Null sein müsste. Alle so ermittelten Punkte werden verbunden und ergeben die gewünschte Isolinie.

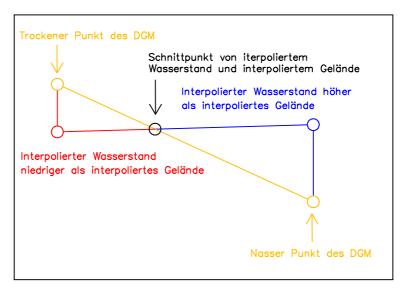


Abbildung 17: Ermittlung des Nass/Trocken-Überganges

Um die gewünschten Abstufungen zu erreichen (vgl. Abschnitt 3.3), werden die Geländehöhen des DGM schrittweise um die gewünschte Schrittweite <Diff> verändert und die Schritte VII und VIII so lange wiederholt, bis die gewünschte maximale Wassertiefe erreicht ist. Ist die Startwassertiefe <Von> ungleich Null, so wird dieses Anheben bzw. Absenken bereits einmal vor Schritt VII durchgeführt.

2.9 Schritt IX - Schreiben der Ausgabedateien

Nachdem intern die Polygone gebildet wurden, die die verschiedenen Wassertiefen repräsentieren, werden sie in eine Ergebnisdatei geschrieben, die über die Kommandozeile definiert wird (siehe Abschnitt 3.15). Wird der Parameter nicht angegeben, so wird die Datei WSPLGEN. SHP erzeugt (siehe Abschnitt 3.15). Das Format der Ausgabedatei wird genauer in Abschnitt 7.1 beschrieben.

Während des Laufs von WSPLGEN wird der akutelle Bearbeitungsstand kontinuierlich in die Standardausgabe (stdout) geschrieben, so dass die GUI in der Lage ist, ihn anzuzeigen.

Warnungen und maximal ein Fehler (da nach einem Fehler das Programm sofort beendet wird), werden in die Standardausgabe für Fehler (stderr) geschrieben, und sollten von der GUI angezeigt werden, so dass der Benutzer nach dem Beenden von WSPLGEN überprüfen kann, ob alles zu seiner Zufriedenheit erledigt werden konnte oder es Probleme gegeben hat.

Eine direkte Interaktion mit dem Programm WSPLGEN ist nicht vorgesehen. Sollte es also einen Fehler oder Warnungen gegeben haben, die der Benutzer nicht ignorieren will, so muss er die Eingabedaten oder Parameter ändern und einen erneuten Lauf starten. Die Meldungen sind aber so aussagekräftig, dass sie dem Benutzer optimale Hinweise für sein weiteres Vorgehen liefern.

Nur wenn es keinen Fehler gegeben hat, wird eine Shape-Datei erzeugt, die in einer GUI visualisiert werden kann.

Während der gesamten Bearbeitung werden noch 5 weitere Ausgabedateien erzeugt, die den gleich Namen wie die eigentliche Ausgabedatei haben und dazu dienten die Ergebnisse besser nachvollziehen zu können.

Es handelt dabei sich um das verwendete Begrenzungspolygon (Polygon-Shape), die interpolierten Profile (Linien-Shape) mit den zugewiesenen Wasserständen, die Knoten (Punkt-Shape) mit den entsprechend zugewiesenen Wasserständen, die Knoten (Punkt-Shape) mit den entsprechend extrapolierten Wasserständen und die Elemente (Polygon-Shape) des vernetzten DGM, die als Attribute die Wasserstände enthalten, die aus den drei Eckknoten gemittelten werden (siehe auch Abschnitt 7.1).

3 Kommandozeilen Parameter

Jeder Parameter beginnt mit einem Leerzeichen gefolgt von dem Zeichen '-' und seinem Namen. Falls dem Parameter Argumente folgen sollen, so muss als nächstes Zeichen ein '=' folgen. Danach kommt die durch Komma getrennte Liste der Argumente. Da das Komma hier als Trennzeichen dient, darf es nicht ungeschützt in den Argumenten verwendet werden. Der Schutz des Zeichens wird durch das Einschließen eines Arguments durch das Zeichen '"' erreicht. Auch die Verwendung von Leerzeichen in Argumenten (z.B. Pfadangaben) ist so möglich. Ein Pfad mit Leerzeichen kann z.B. so übergeben werden.

-PAR="C:\Eigene Dateien\WSPLGEN\Job.PAR"

Folgende Parameter können zur Feinsteuerung der Arbeitsweise von WSPLGEN übergeben werden:

3.1 OUTPUT (Ausgabeoptionen)

Kurzfassung Angabe der Menge der Ausgaben

Format -OUTPUT=<Menge>

Status optional

Argumente Name Typ Einheit Standardwert

Menge Integer - 0

Beispiel -OUTPUT=2

Als Argumente für den Parameter -OUTPUT sind nur die Zahlen 0 bis 9 sinnvoll, wobei die Menge der Ausgaben mit der Größe der Nummer steigt. Die Nummern 8 und 9 sollten nur bei kleinen Datenmengen und zur Fehlersuche verwendet werden, da die Menge der Ausgaben dann sehr groß wird.

3.2 PAR (Parameterdatei)

Kurzfassung Angabe einer Parameterdatei zur Definition weiterer Parameter

Format -PAR=<Pfad>

Status optional

Argumente Name Typ Einheit Standardwert

Pfad Pfadangabe - -

Beispiel -PAR=WSPLGEN.PAR

Da die Eingabe von Kommandozeilen über Windows einer Längenbeschränkung unterliegt, was in Kombination mit langen Pfadnamen leicht zu Problemen führen kann, wird auch die Zusammenfassung aller Parameter in einer Parameterdatei vorgesehen. Wird sie verwendet, wird zunächst die Kommandozeile weiter ausgewertet und danach zusätzlich weitere Parameter in der Parameterdatei berücksichtigt.

In jeder Zeile dieser Datei würde dann ein Parameter stehen, der vom Aufbau genau den Anforderungen entspricht, wie sie auch direkt auf der Kommandozeile bestehen.

Der Name der Parameterdatei ist das einzige Argument des Parameters -PAR.

Um die Parameterdatei kommentieren zu können, werden Zeilen, die mit den Zeichen '#', '/' oder ';' beginnnen nicht als falsche Parameter interpretiert, sondern ignoriert. Zeilen die mit dem Zeichen '' beginnnen, werden komplett in der Ausgabe wiedergegeben. Auf diese Weise läßt sich in der Parameterdatei eine Angabe machen, die es ermöglicht die Ausgabe dieser Parameterdatei später wieder zuzuordnen.

3.3 DELTA (Abstufungen der Wassertiefen)

Kurzfassung	Abstufungen	der Wassertiefe	n	
Format	-DELTA= <von>,<bis>,<diff></diff></bis></von>			
Status	optional			
Argumente	Name	Тур	Einheit	Standardwert
	Von	Float	m	0,0
	Bis	Float	m	siehe unten
	Diff	Float	m	siehe unten
Beispiel	-DELTA=1.0,	2.0,0.25		

Der Parameter -DELTA bestimmt, in welchen Abstufungen die Wassertiefenpolygone generiert werden sollen, die Isolinien gleicher Wassertiefe repräsentieren. Die entsprechenden Wassertiefen werden aus den Argumenten <Von>, <Bis> und <Diff> gebildet.

Begonnen wird mit der Wassertiefe <Von> (die auch negativ sein darf, was dann einer Höhe über dem Wasserstand, also quasi einem Freibord entspricht). Danach wird die Wassertiefe solange um den Wert von <Diff> erhöht, bis sich eine Wassertiefe größer als <Bis> ergibt.

Wird das Argument <Von> ausgelassen (das Komma wird dann das erste Zeichen hinter dem Gleichheitszeichen), wird für <Von> der Wert 0,00 angenommen.

Wird das Argument <Bis> ausgelassen (es gibt dann zwei Kommata hintereinander), wird der maximale Wert der ermittelten Wasserstiefen für <Bis> angenommen.

Wird das Argument <Diff> ausgelassen (das Komma wird dann zum letzten Zeichen dieses Parameters), wird für <Diff> die auf zwei Nachkommastellen gerundete und durch 10 geteilte Differenz zwischen <Bis> und <Von> angenommen.

Man kann auch ganz auf den Parameter verzichten, was dem Ausruf -DELTA=,, entspricht.

Beispiel: -DELTA=1.0,2.0,0.25

In diesem Beispiel werden die Isolinien für 5 verschiedene Wassertiefen erzeugt (1,00, 1,25, 1,50, 1,75 und 2,00).

Beispiel: -DELTA=0.9,2.1,0.25

Auch in diesem Beispiel werden die Isolinien für 5 verschiedene Wassertiefen erzeugt (0,90, 1,15, 1,40, 1,65 und 1,90), da der nächste Schritt 2,15 größer als 2,10 ist.

Beispiel: -DELTA=, 1.0, 0.25

In diesem Beispiel werden die Isolinien für 5 verschiedene Wassertiefen erzeugt (0,00, 0,25, 0,50, 0,75 und 1,00).

Beispiel: -DELTA=,,0.25

Ist die größte Wassertiefe z.B. 2,345, so werden die Isolinien für 10 verschiedene Wassertiefen erzeugt (0,00, 0,25, 0,50, 0,75, 1,00, 1,25, 1,50, 1,75, 2,00 und 2,25) erzeugt.

Beispiel: -DELTA=1.3,,

Ist die größte Wassertiefe z.B. 2,345, so werden die Isolinien für 11 verschiedene Wassertiefen (1,3, 1,4, 1,5, 1,6, 1,7, 1,8, 1,9, 2,0, 2,1, 2,2 und 2,3) erzeugt, da die Differenz von 2,345 und 1,3 den Wert 1,045 ergibt und damit ein Wert von 0,10 für <Diff> verwendet wird.

Beispiel: -DELTA= , ,

In diesem Beispiel werden alle Argumente automatisch bestimmt.

Standardwert: Siehe oben

3.4 GEL (Einfluss von Geländeerhebungen)

Kurzfassung Auswahl wie Geländeerhebungen berücksichtigt werden

Format -GEL=<SPERRE|NOSPERRE>

Status optional

ArgumenteNameTypEinheitStandardwert

Typ Flag Zeichenkette SPERRE

Beispiel -GEL=NOSPERRE

Der Parameter -GEL bestimmt, ob die Wasserstände durch Geländeerhebungen hindurch getragen werden sollen (NOSPERRE). Dies würde ein potenziel gefährdetes Gebiet im Hinterland produzieren, in dem der Wasserstand in etwa den Gradienten des Flusses aufweisen würde (keine sinnvolle Wiedergabe von eingestauten Flächen).

Wird der Parameter mit dem Wert SPERRE verwendet, so wird das aktuelle Ü-Gebiet ermittelt, welches auch eingestaute Flächen enthalten kann.

Eine Kombinationes des Wert NOSPERRE mit Linienobjekten (siehe Abschnitt 3.11) ist nicht sinnvoll und sollte in der GUI verhindert werden. Wird der Parameter doch zusammen mit Linienobjekten angegeben und der Wert des Arguments ist NOSPERRE, wird eine Warnung generiert und der Parameter ignoriert (siehe Abschnitt 7.4).

Wird der Parameter -GEL nicht angegeben, so wird der Wert SPERRE angenommen. Es wird dann das aktulle Ü-Gebiet oder ein Szenario ermittelt, je nachdem, ob eine Datei mit Linienobjekten zusätzlich abgegeben wurde.

3.5 DGM (Digitales Geländemodell)

Kurzfassung Angabe einer DGM-Datei

Format -DGM=<Pfad>
Status Erforderlich

Argumente Name Typ Einheit Standardwert

Pfad Pfadangabe - -

Beispiel -DGM=DGM.XYZ

Das Format der Daten wird von dem Programm WSPLGEN anhand der Dateiendungen selbst erkannt und eine Plausibilitätsprüfung des DGM vorgenommen.

Das DGM muss entweder durch Punke im SHAPE- oder ASCII-Format (X,Y,Z-Tripel), als ASCII-Grid, wie es vom ESRI Spatial Analyst verwendet wird, als TIN, wie es der ESRI 3D-Analyst verwendet oder im 2DM-Format von SMS der Firma ems-i definiert sein. Vorzuziehen wäre das 2DM-Format, da hier die besten Möglichkeiten bestehen, das Gelände korrekt wiederzugeben und eine schnelle Verarbeitung zu gewährleisten.

Werden WSPLGEN nur X,Y,Z-Tripel (Punkt-SHAPE oder ASCII-Datei) übergeben, so werden die einzelnen Punkte mit einem einfach Triangulierungsalgorithmus vermascht.

Ein Grid, wie es vom Spatial Analyst verwendet wird, sollte die letzte Wahl sein. Bedingt durch die rechteckige Form, wird die Datenmenge schnell recht groß und Strukturen wie Deiche oder Gräben können kaum wiedergegeben werden, da ein Grid immer nur eine rechteckige "Vermaschung" unterstützt.

3.6 PRO (Profilspuren)

Kurzfassung Angabe einer Profilspur-Datei

Format -PRO=<Pfad>
Status Erforderlich

Argumente Name Typ Einheit Standardwert

Pfad Pfadangabe - siehe unten

Beispiel -DIST=0.2

Mit dem Parameter – PRO wird bestimmt, mit welcher Datei die Profilspuren definiert werden.

Die Profilspuren werden immer als Polylinien-Thema in einer Shape-Datei übergeben. Die Profilspuren können dabei beliebige Knicke enthalten. Jeder Profilspur ist eine eindeutige Stationierung zugewiesen (z.B. 120,230). Diese Angabe ist notwendig, damit das Programm weitere benötigte Profilspuren selbstständig interpolieren kann.

Der komplette Pfad der Datei mit den Profilspuren wird dem Programm WSPLGEN mit dem Parameter –PRO übergeben und eine Plausibilitätsprüfung der Profilspuren vorgenommen (z.B. Unterschiede zwischen mittlerem Abstand der Profilspuren und der Differenz der Stationierung, Orientierung der Profile, d.h. es wird überprüft, ob alle Profile auf der gleichen Gewässerseite anfangen).

3.7 STRECKE (Begrenzung des Berechnungsstrecke)

Kurzfassung Begrenzung der Berechnungsstrecke

Format -STRECKE=<Von>,<Bis>

Status optional

Argumente Name Typ Einheit Standardwert

Von Float km $-\infty$ Bis Float km $+\infty$

Beispiel -STRECKE=100.5,123.0

Der Parameter -STRECKE bestimmt, welche Profile für die Berechnung verwendet werden sollen und damit auch die Berechnungsstrecke. Es werden also nur die Profile eingelesen, die eine Station haben, die zwischen <Von> und <Bis> liegt (siehe auch Abschnitt 4.2).

Wird das Argument <Bis> weggelassen, so werden alle Profile bearbeitet, die eine Station größer gleich <Von> aufweisen.

Beispiel: -STECKE=20.450

Wird das Argument <Von> weggelassen, so werden alle Profile bearbeitet, die eine Station kleiner gleich <Bis> aufweisen.

Beispiel: -STECKE=, 20.450

Ganz ohne die Argumente ist der Parameter sinnlos.

3.8 DIST (gewünschter Abstand der interpolierten Profile)

Kurzfassung Abstand der interpolierten Profile

Format -DIST=<Abstand>

Status optional

Argumente Name Typ Einheit Standardwert

Abstand Float km siehe unten

Beispiel -DIST=0.200

Der Parameter -DIST bestimmt, wie groß der gewünschte Abstand der Profile nach dem Interpolieren sein soll.

Dabei wird für je zwei benachbarte Profile ihr Abstand (die Strecke zwischen den jeweiligen Schnittpunkten auf der Gewässerachse und nicht die Differenz der Stationierungen) ermittelte und durch den gewünschten Abstand geteilt. Das Ergebnis wird auf die nächste ganze Zahl gerundet und um 1 vermindert. Das Ergebnis ist die Anzahl der zwischen den beiden Profile zu interpolierenden Profile.

Beipiel: -DIST=0.250

Sei der Abstand zweiter Profile 1,300 km so werden 1,300 km / 0,250 km - 1 = 4 Profile interpoliert. Der tatsächliche Abstand der interpolierten Profile beträgt dann 1,300 km / 5 = 0,260 km.

Beipiel: -DIST=0.250

Sei der Abstand zweiter Profile 0,230 km so werden 0,230 km / 0,250 km - 1 = 0 Profile interpoliert. Es werden also keine Profile zwischen den beiden Profilen interpoliert.

Wie der Parameter -DIST- nicht angegeben, so wird der doppelte mittlere Abstand der verwendeten Knoten verwendet.

Wählt man den Wert für -DIST sehr groß so werden keine Profile interpoliert.

Es werden aber nie Profile gelöscht.

3.9 WSP (Wasserstände)

Kurzfassung Angabe einer Wasserstands-Datei

Format -WSP=<Pfad>
Status Erforderlich

Argumente Name Typ Einheit Standardwert

Pfad Pfadangabe - -

Beispiel -WSP=HQ5-120-129.TXT

Mit dem Parameter -WSP wird bestimmt, mit welcher Datei die Wasserstände definiert werden, die den Profilspuren zugeordnet werden sollen.

Die Wasserstände können als Tabelle im ASCII- oder DBF-Format vorliegen. Dabei muss eine eindeutige Zuordnung zu den Gewässerquerprofilen möglich sein. Eine Tabelle muss also 2 Spalten (Stationierung und Wasserstand) enthalten.

Eine andere Möglichkeit ist das WST-Format der BfG. Wird dieses verwendet, so muss auch der Parameter -WSPTAG angegeben werden.

Das Format der Daten wird von dem Programm WSPLGEN selbst erkannt und eine Plausibilitätsprüfung der Wasserstände vorgenommen (z.B. Kontinuierliches Abnehmen der Wasserstände mit bzw. gegen die Stationierung).

3.10 WSPTAG (Spaltenbeschreibung der Wasserstände im WST-Format)

Kurzfassung Spalte

Format -WSPTAG=<Spaltenbeschreibung>

Status Erforderlich falls WST-Datei eingelesen wird

Argumente Name Typ Einheit Standardwert

Spalte Text(9) - -

Beispiel -WSPTAG=HQ(1000a)

Mit dem Parameter -WSPTAG wird bestimmt, in welcher Spalte der WST-Datei die Wasserstände definiert werden, die den Profilspuren zugeordnet werden sollen.

3.11 LIN ("Dämme", "Gräben" und "Rohe")

Kurzfassung Angabe einer Datei mit Linienobjekten

Format -LIN=<Pfad>
Status optional

Argumente Name Typ Einheit Standardwert

Pfad Pfadangabe - -

Beispiel -LIN=BREAK.SHP

Mit dem Parameter -LIN wird bestimmt, mit welcher Datei die Linienobjekte ("Dämme", "Gräben" oder "Rohre") definiert werden.

3.12 ACHSE (Gewässerachse)

Kurzfassung Angabe einer Datei mit der Gewässerachse

Format -ACHSE=<Pfad>

Status optional

Argumente Name Typ Einheit Standardwert

Pfad Pfadangabe - -

Beispiel -ACHSE=WESER.SHP

Mit dem Parameter -ACHSE wird bestimmt, mit welcher Datei die Gewässerachse definiert wird.

3.13 GEBIET (hydraulisch relevante Grenze)

Kurzfassung Angabe einer Datei mit der hydraulisch relevanten Grenze

Format -GEBIET=<Pfad>

Status optional

Argumente Name Typ Einheit Standardwert

Pfad Pfadangabe - -

Beispiel -GEBIET=talaue.shp

Mit dem Parameter -GEBIET wird bestimmt, mit welcher Datei die hydraulisch relevante Grenze definiert wird.

3.14 SAVETRI (Speichern der Triangulierung)

Kurzfassung Speichern der Triangulierung in einer 2DM-Datei

Format -SAVETRI Status optional

Argumente Name Typ Einheit Standardwert

_ _ _

Beispiel -SAVETRI

Der Parameter -SAVETRI sorgt dafür, dass die Ergebnisse der Triangulierung für eine spätere Verwendung gespeichert werden. Es wird dabei der Name der Ausgabedatei ohne Dateiendung verwendet, dem die Zeichenkette _trianguliertes_netz.2dm angehängt wird.

Das 2DM-Dateiformat kann auch von WSPLGEN wieder gelesen werden.

3.15 AUSGABE (Ausgabedatei)

Kurzfassung Ausgabedatei

Format -AUSGABE=<Pfad>

Status optional

Argumente Name Typ Einheit Standardwert

Pfad Pfadangabe - WSPLGEN.SHP

Beispiel -WSP=000-100.SHP

Als wesentliche Ausgabedaten generiert das Programm WSPLGEN bei fehlerfreier Ausführung eine Shape-Datei, in der Polygone enthalten sind, deren Grenzen Isolinien gleicher Wassertiefe repräsentieren (siehe Abschnitt 7.1). Wird dieser Parameter nicht angegeben, so wird als Ausgabedateiname ein Standardwert angenommen.

Zusätzlich werden aus dem Dateinamen für die Hauptausgabedatei noch die Dateinamen für die weiteren 5 Shape-Dateien generiert, die Zwischenergebnisse bzw. Zusatzinformationen enthalten. Dazu wird dem Ausgabedateiname ohne Endung jeweils eine der folgenden Zeichenketten angehängt: _begrenzungspolygon, _interpolierte_profile, _profilknoten, _knoten und _elemente.

3.16 ? (Versionsnummer)

Kurzfassung Ausgabe der Versionsnummer

Format 5

Status optional

Argumente Name Typ Einheit Standardwert

Beispiel ?

Der Parameter ? ist ein besonderer Parameter. Er wird nur benötigt, damit andere Programme automatisch die Versionsnummer von WSPLGEN abfragen können.

Er wird auch nicht mit einem Minuszeichen begonnen.

WSPLGEN beendet sich sofort nach der Ausgabe der Versionsnummer auf die Standardausgabe wieder.

Will man als Mensch die Versionsnummer von WSPLGEN erfahren, so erpfiehlt es sich das Programm ganz ohne Parameter zu starten, da es dann die Versionsnummer zusätzlich zu ein paar anderen Informationen in die Datei WSPLGEN.LOG schreibt.

4 Zwingend erforderliche Eingabedateien

Für alle Eingabedateien im ASCII-Format gilt:

Kopfzeile: Attributnamen der Tabelle

Weitere Zeilen: Attributwerten

Zeilenende: Newline und/oder carriage return

Spaltentrenner: beliebig viele Leerzeichen und Tabulatoren **Float:** Ziffern von 0 bis 9, Dezimaltrenner: ',' oder '.' **Text:** ASCII-Zeichen in einheitlichem Encoding

Folgende Dateien werden von WSPLGEN zwingend benötigt.

4.1 Digitales Geländemodell (DGM)

Das digitale Geländemodell darf in fünf verschiedenen Dateiformaten vorliegen, die im Folgenden näher beschrieben werden. Die Unterscheidung welches Dateiformat vorliegt, trifft WSPLGEN anhand der Endung des Dateinames.

Endung	Dateiformat
ADF	ESRI TIN-Format
GRD, ASC	ESRI ASCII Raster-Datei-Format
SHP	ESRI POINT-Shape-Format
TXT, XYZ	ASCII-Format mit X,Y,Z-Tripeln
2DM	Generic-Format der Software SMS der Firma ems-i

4.1.1 ASCII-Format mit X,Y,Z-TripeIn

Name	Beschreibung	Datentyp	Wertebereich	Einheit
X	X-Koordinate	Float(10.2)	-	m
Y	Y-Koordinate	Float(10.2)	-	m
Z	Z-Koordinate	Float(10.2)	-	m

Format Beschreibung:

Die Dateien in diesem Format, haben nur eine Kopfzeile und danach Tripel von Zahlen, die die Xund Y-Koordinaten von Geländepunkten und als Z-Wert die Geländehöhe angeben.

Leerzeilen, also Zeilen, die nur aus *Trennzeichen* und *Zeilenendzeichen* gebildet werden, werden einfach überlesen.

Welche Zahl in einer Zeile welche Bedeutung hat, wird durch die Reihenfolge der Zeichen 'X', 'Y' und 'Z' in der Kopfzeile bestimmt.

Jede weitere Zahl oder jedes weitere Zeichen in einer Zeile werden ignoriert.

Format Beispiele:

Dies wäre eine 'normale' Datei.

```
X Y Z
3542345.23 5836253.23 123.34
3537627.00 5836234.10 121.12
```

Dies wäre eine 'merkwürdige', aber trotzdem gültige Datei.

Y Z X

```
5836253.23 123.34 3542345.23
5836234.10123 121 3537627,0012 # der Wert stimmt nicht
5817652 -88 345639872,234 36464 28282.344.222 noch Datenmüll
```

5836234.10 11,123 3537627.0012

4.1.2 ESRI ASCII Raster-Datei-Format

Name	Beschreibung	Datentyp	Wertebereich	Einheit
NCols	Anzahl Spalten	Integer(8)	-	-
NRows	Anzahl Reihen	Integer(8)	-	-
XLLCorner	X-Koordinate	Float(10.2)	-	m
YLLCorner	Y-Koordinate	Float(10.2)	-	m
XLLCenter	X-Koordinate	Float(10.2)	-	m
YLLCenter	Y-Koordinate	Float(10.2)	-	m
CellSize	Zellengröße	Float(10.2)	-	m
NoDataValue	Z-Wert	Float(10.2)	-	-
Z	Z-Wert	Float(10.2)	-	m

Als weiteres gültiges Format für die DGM-Daten kann das ESRI ASCII Raster-Datei-Format (Grid-Format) verwendet werden.

Formatbeschreibung:

Das ASCII Raster-Datei-Format ist ein einfaches Format, das benutzt werden kann, um Raster-Daten zwischen verschiedenen Programmen auszutauschen. Es besteht im Wesentlichen aus ein paar Kopfzeilen denen eine Liste von Zellwerten folgt.

Die Kopfzeilen enthalten die folgenden Schlüsselworte und Werte.

ncols	Anzahl der Spalten im Datensatz
nrows	Anzahl der Zeilen im Datensatz
xllcenter oder xllcorner	X-Koordinate des Zentrums oder der linken,unteren Ecke
	der linken,unteren Zelle des Datensatzes
yllcenter oder yllcorner	Y-Koordinate des Zentrums oder der linken,unteren Ecke
	der linken,unteren Zelle des Datensatzes
cellsize	Zellgröße des Datensatzes
nodata_value	Wert der Zellen zugewiesen wird, für die der Wert unbe-
	kannt ist. Dieses Schlüsselwort ist optional. Wird es nicht
	angegeben wird als Standardwert -9999 angenommen.

Die erste Zeile repräsentiert die Werte, die ganz oben im Datensatz liegen und läuft von links nach rechts. Die Zellwerte müssen durch Leerzeichen getrennt sein. Am Ende einer Zeile des Datensatzes ist kein *Zeilenendzeichen* notwendig. Die Anzahl der Spalten, die im Kopf definiert wurde, wird benutzt, um zu ermitteln, wann eine neue Zeile des Datensatzes beginnt. Die Anzahl der Zellenwerte muss gleich sein mit dem Produkt aus Anzahl Zeilen mal Anzahl Spalten.

Format Beispiel:

ncols	4		
nrows	5		
xllcor	ner 3789	23.56	
yllcor	ner 4072	345.43	
cellsi	ze 30.23		
nodata	_value -	100.00	
43.0	3.2	45	7.2
3.1	56.2	2.3	5.5
23.7	65.3	34.4	6.2
32.1	35	45.12	65.12
34.1	2	6	78
etc			

Bemerkung:

Als *Kommazeichen* dürfen hier entgegen der amerikanischen Originaldefinition von ESRI sowohl das Zeichen ',' als auch das Zeichen ',' verwendet werden.

Als *Trennzeichen* dürfen hier entgegen der amerikanischen Originaldefinition von ESRI sowohl Leerzeichen als auch Tabulatoren verwendet werden.

4.1.3 ESRI TIN-Format

Name	Beschreibung	Datentyp	Wertebereich	Einheit
X	X-Koordinate	Float mit 8-Bytes	-	m
Y	Y-Koordinate	Float mit 8-Bytes	-	m
Z	Z-Koordinate	Float mit 4-Bytes	-	m
Nr1	Punkt-Nr	Integer mit 4 Bytes	-	-
Nr2	Punkt-Nr	Integer mit 4 Bytes	-	-
Nr3	Punkt-Nr	Integer mit 4 Bytes	-	-

Beim TIN-Format (Triangulated Irregular Netzwork, unregelmßig vermaschtes Netz aus Dreiecken) werden die Daten in verschiedenen Dateien abgespeichert, die alle in einem Ordner liegen, der mit seinem Namen den Namen des TINs bestimmt. Die Dateinamen für ein TIN stehen fest. Für das einfache vermaschte Netz werden nur die die Dateien tnxy.adf, tnzadf und tnod.adf benötigt. Der Pfad wird aus dem Pfad, der mit dem Parameter -DGM übergeben wurde, ermittelt und die entsprechneden Dateinamen angehängt.

Alle 3 Dateien sind im Binär-Format. Die Datei tnxy. adf enthält nur die X- und Y-Koordinaten der Punkte in je 8-Byte Daten (Double, High-Byte first). Die Datei tnz. adf enthält nur die Z-Werte in

je 4-Byte Daten (Float, High-Byte first). Die Datei tnod. adf enthält nur Tripel von Punktnummern (beginned bei 1) in je 4-Byte Daten (Integer, High-Byte first).

Format Beispiel:

Im ASCII-format würden die Dateien z.B. so aussehen, wenn das Netz 5 Punkte und 3 Dreiecke enthält.

tnxy.adf
3456453.23 5345312.13
3456465.12 5345323.34
3456423.02 5345328.46
3456412.34 5345328.21
3456412.00 5345393.02

tnz.adf
11.23
22.23
15.33
29.43
25.34

tnod.adf

ciiou aui

1 2 3

1 3 5

3 4 4

4.1.4 ESRI-POINT-Shape-Format

Name	Beschreibung	Datentyp	Wertebereich	Einheit
X	X-Koordinate	Float	-	m
Y	Y-Koordinate	Float	-	m
Z	Z-Koordinate	Float	_	m

Beim POINT-Shape-Format handelt es sich um das Standard-Shape-Format von ESRI, das entweder Punkte mit oder ohne Z-Anteil enthalten darf (POINT oder POINTZ). Wenn nur Punkte ohne Z-Anteil vorliegen, wird versucht die Höhe über ein Attribut zu bestimmen. Das Attribut muss dann vom Typ Fließkommazahl (Float) sein. Der Name das Attributes lautet dann Z.

Hinweis: Für den Attributnamen werden aber auch verschiedene andere Namen akzeptiert (z.B. Hoehe, Topo, mNN).

4.1.5 2DM-Format

Name	Beschreibung	Datentyp	Wertebereich	Einheit
X	X-Koordinate	Float	-	m
Y	Y-Koordinate	Float	-	m
Z	Z-Koordinate	Float	-	m
Nr1	Punkt-Nr	Integer	-	-
Nr2	Punkt-Nr	Integer	-	-
Nr3	Punkt-Nr	Integer	-	-

Das 2DM-Format wird von der Software SMS benutzt, um Modelle für die zweidimensionale Modellierung zu speichern. Es ist in zwei Bereich aufgeteilt. Zuerst werden die Elemente eines Netztes definiert und danach die Knoten. Jeder Zeile enthält dabei genau ein Element oder einen Knoten oder weitere Informatioen, die für WSPLGEn nicht relevant sind.

Jedes Element beginnt mit der Zeichenkette ET3 gefolgt von einer Nummer und den 3 Nummern der Knoten die das Element bilden. Am Ende steht noch ein Wert für die Rauhheiten, der genau wie die Elementnummer für WSPLGEN unwichtig ist.

Die Knoten beginnen immer mit ND gefolgt von der Knotennummer, die von den Elementen verwendet wird und den X-, Y- und Z- Koordinaten. Format Beispiel:

```
ET3 1 1 2 3

ET3 1 2 1 4

ET3 1 2 4 5

ND 1 3456453.23 5345312.13 23.23

ND 2 3456465.12 5345323.34 34.54

ND 3 3456423.02 5345328.46 1.23

ND 4 3456412.34 5345328.21 456.4

ND 5 3456412.00 5345393.02-1.2
```

4.2 Profilspuren

]	Name	Beschreibung	Datentyp	Wertebereich	Einheit
2	X	X-Koordinate	Float(10.2)	-	m
7	Y	Y-Koordinate	Float(10.2)	-	m
(STATION	Stationierung	Float(10.4)	-	km

Format Beschreibung:

Die Profilspuren werden immer als Polylinien-Thema in einer Shape-Datei übergeben, wobei es egal ist, ob der Typ des Polylinien-Themas ARC, ARCZ oder ARCM ist. Die Profilspuren (Polylinien) können dabei aus beliebig viele Stützstellen bestehen. Jeder Profilspur ist eine eindeutige Stationierung in Kilometern zugewiesen (z.B. 120,230). Die Angabe ist notwendig, damit das Programm WSPLGEN weitere benötigte Profilspuren selbstständig interpolieren kann.

Der Wert für die Station wird gespeichert in dem Attribut STATION, das vom Typ Fließkommazahl (Float) ist und maximal 4 Nachkommastellen enthalten sollte, da die Stationen auf 4 Nachkommastellen auf- bzw. abgerundet werden. Interpretiert man die Station als Gewässerkilometerangabe, so bedeuten 4 Nachkommastellen ein Genauigkeit von 10 cm was für Profilspuren völlig ausreichend ist.

Eine Stationierung könnte dann z.B. so aussehen 123,234. Dabei ist es nicht wichtig, welches Trennzeichen verwendet wird, da die Zahlen binär gespeichert werden und somit kein Trennzeichen verwendet wird.

Die Stationen dürfen nicht als Typ Text vorliegen (z.B. als 123+234).

Die X- und Y-Koordinaten der Stützstellen der Polylinien werden im Allgemeinen als Meter interpretiert. Wichtig ist, dass sie im gleichen Koordinatensystem und der gleichen Projektion wie die des DGM vorliegen und die gleiche Einheit haben. Es wird keine Transformation zwischen diesen beiden Daten durchgeführt.

Die Z- und M- Werte der Polylinien werden immer ignoriert.

Hinweis:

Statt des Feldnames STATION können auch die Feldnamen KILOMETER und KM verwendet werden. Statt des Feldnames GEW kann auch der Feldname GEWÄSSER verwendet werden.

4.3 Wasserstände

Name	Beschreibung	Datentyp	Wertebereich	Einheit
STATION	Stationierung	Float(10.4)	-	km
WSP	Wasserstand	Float(10.2)	> 0	m

Dateiformat: ASCII, DBase-Format (DBF-Format) oder WST-Format

Die Wasserstände müssen den Profilspuren zugeordnet werden können, wobei keine direkte Zuordnung notwendig ist. Es reicht aus, wenn Wasserstände für Profilspuren linear interpoliert werden können, es also einen Wasserstand mit einer Stationierung stromauf und einen Wasserstand mit einer Stationierung stromab einer Profilspur gibt. Um eine sinnvolle Zuordnung zu ermöglichen, müssen die Wasserstände, genau wie die Profilspuren, mit einem Gewässer (bzw. Gewässerabschnitt) und einer Station gekennzeichnet sein. Es werden nur Wasserstände für die Zuordnung herangezogen, die exakt gleiche Gewässerbeschreibungen wie die Profilspuren haben, denen sie zugeordnet werden sollen.

Die Wasserstände werden in einer Datei im ASCII-, DBF- oder WST-Format übergeben. Da die DBF- Datei immer auch eine der drei Dateien einer SHAPE-Datei ist, kann man auch sagen, das es sich um beliebige SHAPE-Dateien handeln kann, die die richtigen Attribute aufweisen müssen. Die geometrischen Informationen der Shape-Dateien sind hier überflüssig und werden nicht eingelesen.

Hinweis:

Statt des Feldnames STATION können auch die Feldnamen KILOMETER und KM verwendet werden. Statt des Feldnames WSP kann auch der Feldname WASSERSTAND verwendet werden.

4.3.1 ASCII-Format

Das einfachste Format ist ein Format, das nur eine Kopfzeile und danach Tripel von Texten und Zahlen enthält, die das Gewässer, die Station und den Wasserstand beschreiben.

Die Zeichenketten 'STATION' und 'WSP' bestimmen die Spalten für die entsprechenden Werte und stehen in der Kopfzeile.

Leerzeilen, also Zeilen, die nur aus *Trennzeichen* und *Zeilenendzeichen* gebildet werden, werden überlesen.

Die Zeichenkette darf nur dann Leerzeichen enthalten, wenn sie durch das Zeichen '"' am Anfang und am Ende geschützt ist. Das Zeichen '"' wird nicht mit in die Zeichenkette aufgenommen.

Welche Zahl in einer Zeile welche Bedeutung hat, wird durch die Reihenfolge der Zeichenketten 'STATION' und 'WSP' in der Kopfzeile bestimmt.

Jede weitere Zahl oder jedes weitere Zeichen in einer Zeile werden ignoriert.

Format Beispiele:

STATION	WSP
100,000	22,23
100,300	22,12
100,600	22,03
100,900	21,97
101,200	21,94
101,512	21,76
101,842	20,21
102,100	20,01

4.3.2 DBF-Format

Dieses Format ist ein klassisches binäres Datenbankformat, das nur aus einem Datenblatt besteht, das wiederum aus einer Definition und den anschließenden Daten besteht.

4.3.3 WST-Format

Dieses Format ist ein ASCII-basiertes Dateiformat. Es werden nur die für das Einlesen relevanten Beschreibungen aufgeführt.

- 1. In der ersten Zeile muss die maximale Anzahl von Datenspalten angegeben sein.
- 2. Die folgenden Zeilen beginnen normalerweise mit dem Zeichen * und sind reine Kommentarzeilen.
- 3. Die erste Zeile, die nicht mit einem Zeichen * beginnt, ist so aufgeteilt das zuerst 8 beliebige Zeichen kommen (normalerweise Leerzeichen). Danach folgen für jede Datenspalte ein Trennzeichen (üblicherweise ein Leerzeichen) und 8 Zeichen, die die Spaltenüberschrift (bzw. den Spaltenbezeichner) definieren.

- 4. Falls Spaltenbezeichner verwendet werden sollen, die länger als 8 Zeichen sind, so muss eine der vorgehenden Kommentarzeilen mit der Zeichenkette *!column-bez-text beginnen. Dieser Zeichenkette folgen anschließend die Spaltenbezeichner durch Leerzeichen getrennt. Soll eine Zeichenkette ein Leerzeichen enthalten, so muss die Zeichenkette durch das Zeichen " eingeschlossen werden. Soll das Zeichen " selbst in der Zeichenkette vorkommen, so muss es durch ein das vorangestellte Zeichen \ geschützt werden.
- 5. Nach der Spaltendefinition folgen in willkürlicher Reihenfolge Daten- und Kommentarzeilen, wobei die Kommentarzeilen immer mit dem Zeichen * beginnen. Die Datenreihen enthalten zuerst immer eine Stationsangabe (Kilometrierung mit 3 Nachkommastellen). Der Kilometrierung folgen entsprechend der maximalen Spaltenzahl jeweils 9 Zeichen, die eine Zahl mit 2 Nachkommazahl repräsentieren oder alle leer sind.

Format Beispiele:

6									
*	* ABFLUESSE (2 Spalten gerechnete Werte. 4 Spalten gemessene Werte)								
*		22.30	59.90	83.00	108.00	165.00	224.00		
			MNW		:	1-1-1993	10-10-87		
*	KM	NN + m							
*		22.30	59.90	83.00	108.00	165.00	224.00		
	2.000	65.05	65.05	65.05	65.05	65.05	65.05		
	2.100	65.05	65.05	65.05	65.05	65.05	65.05		
	2.200	65.05	65.05	65.05	65.05	65.05	65.05		
	2.300	65.05	65.05	65.05	65.05	65.05	65.05		
	2.400	65.05	65.05	65.05	65.05	65.05	65.05		
	2.500	65.05	65.05	65.05	65.05	65.05	65.05		
	2.600	65.05	65.05	65.05	65.05	65.05	65.05		
*	Wehrbere	eich							
	4.500	65.05	65.05	65.05	65.05	65.05	65.06		
	4.600	65.05	65.05	65.05	65.05	65.05	65.06		
	4.700	65.05	65.05	65.05	65.05	65.05	65.06		
*		22.30	59.90	83.00	108.00	165.00	224.00		
	4.800	65.05	65.05	65.05	65.05	65.06	65.06		

Jetzt ein Beispiel mit langen Spaltenbezeichnern

3									
*	ABFLUES	SSE (2 Spa	lten gerech	nete W	erte. 4	1 Spalt	en gemes	ssene	Werte)
*		22.30	59.90	83.00	108.	.00 1	65.00	224.0	0 (
*!	column-	bez-text	"Ein langer	Bez"	"Ein \"	sehr\"	langer	Bez"	"B\M"
		Ein lang	Ein "seh B\	M					
*	KM	NN + m							
*		22.30	59.90	83.00					
	2.000	65.05	65.05	65.05					
	2.100	65.05	65.05	65.05					
	2.200	65.05	65.05	65.05					

	2.300	65.05	65.05	65.05
	2.400	65.05	65.05	65.05
	2.500	65.05	65.05	65.05
	2.600	65.05	65.05	65.05
*	Wehrbere	ich		
	4.500	65.05	65.05	65.05
	4.600	65.05	65.05	65.05
	4.700	65.05	65.05	65.05
*		22.30	59.90	83.00
	4.800	65.05	65.05	65.05

4.4 Gewässerachse

Name	Beschreibung	Datentyp	Wertebereich	Einheit
X	X-Koordinate	Float(10.2)	-	m
Y	Y-Koordinate	Float(10.2)	-	m

Diese Datei ist dient dazu, die Lage des Gewässers innerhalb einer Profilespur zu definieren (siehe Abschnitte 2.6 Schritt VI und 3.12). Die Gewässerachse darf aus beliebig vielen Abschnitte bestehen, doch müssen diese lückenlos eine Linie bilden, da aus der Achse eine interne Startionierung für die Interpolation ermittelt wird.

Formatbeschreibung:

Die Datei ist, wie schon die Datei zur Definition der Lage der Gewässerquerprofile, im SHAPE-Format und enthält Polylinien (siehe Abschnitt 4.2).

Wie schon bei der Profilspuren-Datei werden die X- und Y-Koordinaten der Stützstellen der Polylinien im Allgemeinen als Meter interpretiert. Wichtig ist, das sie im gleichen Koordinatensystem und der gleichen Projektion wie die des DGM vorliegen und die gleiche Einheit haben. Es wird keine Transformation zwischen diese beiden Daten durchgeführt.

Z- oder M- Werte der Polylinien werden ignoriert.

5 Optionale Eingabedateien

Optional können noch die folgenden Daten zur Feinsteuerung der Arbeitsweise von WSPLGEN übergeben werden.

5.1 Linienobjekte

Name	Beschreibung	Datentyp	Wertebereich	Einheit
X	X-Koordinate	Float(10.2)	-	m
Y	Y-Koordinate	Float(10.2)	-	m
TYP	Art der Polylinie	Text(8)	DAMM GRABEN ROHR1 ROHR2	_

Diese Datei ist optional und dient nur dazu, dem Benutzer mehr Möglichkeiten zu geben, die Ergebnisse zu beeinflussen (siehe Abschnitte 2.6 Schritt VI und 3.11).

Formatbeschreibung:

Die Datei ist, wie schon die Datei zur Definition der Lage der Gewässerquerprofile, im SHAPE-Format und enthält Polylinien (siehe Abschnitt 4.2).

Sie hat ein Attribut, das den Namen TYP trägt und vom Typ Text (String) ist. Das Attribut darf nur die Werte DAMM, GRABEN, ROHR1 oder ROHR2 annehmen. In jedem anderen Fall wird die zugehörige Polylinie ignoriert und eine Warnung ausgegeben.

Wie schon bei der Profilspuren-Datei werden die X- und Y-Koordinaten der Stützstellen der Polylinien im Allgemeinen als Meter interpretiert. Wichtig ist, das sie im gleichen Koordinatensystem und der gleichen Projektion wie die des DGM vorliegen und die gleiche Einheit haben. Es wird keine Transformation zwischen diese beiden Daten durchgeführt.

Z- oder M- Werte der Polylinien werden ignoriert.

5.2 Hydraulisch relevante Grenze

Name	Beschreibung	Datentyp	Wertebereich	Einheit
X	X-Koordinate	Float(10.2)	-	m
Y	Y-Koordinate	Float(10.2)	_	m

Diese Datei ist dient dazu, die hydraulisch relevante Grenze zu definieren. (siehe Abschnitt 3.13). Es darf nur ein Polygon in der Datei definiert sein.

Formatbeschreibung:

Die Datei ist, wie schon die Datei zur Definition der Lage der Gewässerquerprofile, im SHAPE-Format und enthält genau ein Polygon (siehe Abschnitt 4.2).

Wie schon bei der Profilspuren-Datei werden die X- und Y-Koordinaten der Stützstellen des Polygons im Allgemeinen als Meter interpretiert. Wichtig ist, das sie im gleichen Koordinatensystem und der gleichen Projektion wie die des DGM vorliegen und die gleiche Einheit haben. Es wird keine Transformation zwischen diese beiden Daten durchgeführt.

Z- oder M- Werte des Polygons werden ignoriert.

Wenn diese Datei verwendet wird, so wird das begrenzende Gebiet nicht durch die Endpunkte der Profile, sondern durch dieses Polygon definiert.

6 Rückgabewerte

Wenn WSPLGEN seine Arbeit ohne einen Fehler und Warnungen beenden kann, so wird als Rückgabewert vom Programm 0 zurückgeliefert, was dem aufrufenden Programm oder der Eingabeaufforderung (Shell) anzeigt, dass das Programm ohne Fehler und Warnungen beendet wurde.

Sollte es aber zu einem Fehler oder einer Warnung gekommen sein, so wird ein positiver Rückgabewert in Abhängigkeit der Meldung generiert.

Werden Warnung vom Programm erzeugt, so wird das Programm fortgesetzt und am Ende als Rückgabewert der Wert 1 zurückgegeben.

Werden Fehlermeldungen vom Programm erzeugt, so wird das Programm beendet und am Ende als Rückgabewert der Wert 2 zurückgegeben.

Die verschiedenen Fehlermeldungen sind im Anhang B zusammengefasst.

7 Ausgabedateien

7.1 Ergebnisse

Name	Beschreibung	Datentyp	Wertebereich	Einheit
Diff	Wassertiefe	Float(10.2)	-	m

Als Ausgabedaten generiert das Programm WSPLGEN bei fehlerfreier Ausführung eine Shape-Datei, in der Polygone enthalten sind, deren Umgrenzung Isolinien gleicher Wassertiefe repräsentieren (vgl. Abschnitt 3.3). Die Shape-Datei enthält als Attribut die repräsentierte Wassertiefe. Der gewünschte Name der Shape-Datei (inkl. Pfadangaben) wird dem Programm WSPLGEN wieder über die Kommandozeile durch den Parameter –AUSGABE (siehe Abschnitt 3.15) mitgeteilt.

Format Beschreibung:

Bei der Ausgabedatei handelt es sich um eine Datei im ESRI-Shape-Format des Types (POLYGON).

Die X- und Y-Koordinaten der Polygone werden systembedingt als Gleitkommazahlen gespeichert und sind im gleichen Koordinatensystem mit den gleichen Einheiten wie das DGM, das als Basis für ihre Generierung diente.

Das Attribut, das die repräsentierten Wassertiefen speichert, heißt Diff (Differenz zwischen Wasserstand und Geländehöhe). Es gibt die Wassertiefe in Metern mit 2 Nachkommastellen an und ist daher vom Typ Fließkommazahl (Float).

Der Name der Ausgabedatei wird auch für 5 weitere Ausgabedateien verwendet, die nur dazu dienen die eigentlichen Ergebnisse besser bewerten zu können.

Die Namen dieser Dateien setzen sich aus den Ausgabedateienamen (ohne Endung), den Zusätzen _begrenzungspolygon, _interpolierte_profile, _profil_knoten, _knoten und _elemente und der Endung .shp zusammen.

Wäre der Dateiname der Ausgabedatei z.B. MOSEL . SHP so wäre ein Dateiename der weiteren Ausgabedateinamen MOSEL_KNOTEN . SHP.

Wir bei einer Eingabedatei ein Projektionsdatei gefunden, so wird diese auch für alle Ausgabedatei verwendet, indem sie kopiert und dem Dateiname angepasst wird.

Werden mehrere Projektionsdateien gefunden, die sich unterscheiden, wird eine Warnung ausgegeben und nur die zuerst gefundene verwendet.

7.2 Metadaten

Name	Beschreibung	Datentyp	Wertebereich	Einheit
iso19115full:dateStamp	Erstellungsdatum	jjjj-mm-tt	-	-
smXML:title	Titel	Text	-	-
smXML:CI_Date	Erstellungsdatum	jjjj-mm-tt	-	-
smXML:abstract	Beschreibung	Text	-	-
smXML:LI_Lineage	Ausrufparameter	Text	-	-

Zusätzlich zu den Ausgabedaten generiert das Programm WSPLGEN bei fehlerfreier Ausführung eine XML-Datei, in der Metadaten enthalten sind, die Informationen zur Erstellung der Shape-Dateien enthalten.

Es wurde versucht das Format an den Standard ISO19115 anzupassen, der auch für die Datenbank GGInA der Bundesanstalt für Gewässerkunde verwendet wird.

Format Beschreibung:

Bei der Ausgabedatei handelt es sich um eine Datei im XML-Format.

Der Titel und die Beschreibung sind im Moment noch konstant.

Als Erstellungsdatum wird das lokale Datum verwendet.

Bei der Beschreibung der Entstehung der Daten, werde alle wichtigen Parameter ausgewertet und wiedergegeben.

Bisher werden für die Beschreibungen und Titel nur die ein Byte lange Zeichen mit den Werten von 32 bis 127 und die Zeichen 'ä', 'ö', 'ü', 'Ä', 'Ö', 'Ü' und 'ß' verwendet .

Die deutschen Umlaute z.B. in "Geländehöhe" werden in 2-Byte Unicode kodiert. Probleme mit der Kodierung kann es geben, wenn Dateinamen, die als Parameter übergeben werden andere Sonderzeichen enthalten, da diese im Moment byteweise in die Ausgabe kopiert werden und so eine nicht UTF8-konforme Kodierung entsteht.

7.3 Fortschritt

Während des Laufs von WSPLGEN wird der akutelle Bearbeitungsstand kontinuierlich in die Standardausgabe (stdout) geschrieben, so dass die GUI in der Lage ist, ihn anzuzeigen.

Aus diesem Grund schreibt WSPLGEN immer wieder Text, der entweder in einer Zeile angibt was das Programm gerade tut oder in den folgenden Zeilen wie weit es damit ist.

Format Beispiel:

```
->Lese DGM-Dateien
10000 Punkte gelesen (20% der Datei)
20000 Punkte gelesen (41% der Datei)
30000 Punkte gelesen (62% der Datei)
40000 Punkte gelesen (83% der Datei)
45322 Punkte gelesen (100% der Datei)
->Lese Gewässerquerprofilspuren
100 Profilspuren gelesen (48% der Datei)
200 Profilspuren gelesen (96% der Datei)
212 Profilspuren gelesen (100% der Datei)
->Lese Wasserstände
100 Wasserstände gelesen (85% der Datei)
145 Wasserstände gelesen (100% der Datei)
->Interpoliere Profilspuren
50 von 134 Profilspuren interpoliert
100 von 134 Profilspuren interpoliert
134 von 134 Profilspuren interpoliert
```

```
->Interpoliere Wasserstände
100 von 342 fehlenden Wasserstände interpoliert
200 von 342 fehlenden Wasserstände interpoliert
300 von 342 fehlenden Wasserstände interpoliert
...
```

7.4 Warnungen und Fehler

In die Standardfehlerausgabe (stderr) wird von dem Programm WSPLGEN nur geschrieben, wenn es Warnungen oder sogar einen Fehler im Programm gab.

Diese Warnungen oder der Fehler sollten dem Benutzer immer nach dem Lauf von WSPLGEN angezeigt werden.

Eine direkte Interaktion mit dem Programm WSPLGEN ist nicht vorgesehen. Sollte es also Fehler oder Warnungen gegeben haben, die der Benutzer nicht ignorieren will, so muss er die Eingabedaten oder Parameter ändern und einen erneuten Lauf starten. Die Meldungen werden aber so aussehen, dass sie dem Benutzer optimale Hinweise für sein weiteres Vorgehen liefern.

Format Beschreibung:

Für jede Warnung wird eine Zeile der Form "->Warnung (<nr>)" in die Datei geschrieben, der eine beliebige Anzahl von Textzeilen folgen können, die die Warnung beschreiben.

Die Beschreibung endet dem entsprechenden Text "<-Warnung (<nr>)".

Falls ein Fehler auftritt, wird eine Zeile der Form "->Fehler (<nr>)" in die Datei geschrieben, der eine beliebige Anzahl von Textzeilen folgen können, die den Fehler beschreiben.

Die Beschreibung endet ebenfalls mit dem entsprechenden Text "<-Fehler (<nr>)".

Format Beispiel:

```
->Warnung (1234)
Für die Station 123 wurde der Wasserstand doppelt definiert
(Wasserstände: 123,34 und 123,45).
Es wurde der Wasserstand 123,34 verwendet.
<-Warnung (1234)
->Warnung (3245)
Der Wasserstand bei Profilspur 145 ist kleiner als
alle Geländehöhen im DGM entlang diese Profilspur.
<-Warnung (3245)
->Fehler (3456)
Für die Profilspur "Weser", Station 234,32 wurde kein Wasserstand definiert und es konnte auch keine Wasserstand interpoliert werden, da es keine Nachfolgeprofilspur mit einer höheren
Stationierung gibt.
<-Fehler (3456)
```

8 Zusammenfassung

Das Programm WSPLGEN kommuniziert nur über die Kommandozeile, die Standardausgaben und verschiedene Ein- und Ausgabedateien mit der GUI. Bei fehlerfreier Ausführung wird eine Hauptausgabedatei erzeugt, die Polygone im Shapeformat enthält, die Bereiche gleicher Differenzen zwischen Wasserstand und Geländhöhen repräsentieren. Zusätzlich werden noch 5 Nebenausgabedateien, die Polygone, Punkte oder Linien enthalten produziert. In jedem Fall werden Informationen zum Fortschritt in die Standdadausgabe geschrieben, die den Bearbeitungsstand des Programmes dokumentieren. Sollten Warnungen auftreten oder es zu einem Fehler kommen, so werden alle Meldung (Warnungen und Fehler) in die Fehlerausgabe geschrieben, die für den Anwender hilfreich sein können, wenn er mit der Arbeit des Programmes nicht zufrieden ist.

A Parameter

Parameter	Argumente	Тур	Einheit	Standardwert
OUTPUT	Ausgabemenge	Ziffer	-	0
PAR	Parameter-Datei	Pfadangabe	-	keiner - <optional></optional>
DELTA	<von></von>	Kommazahl	Meter	0
	<bis></bis>	Kommazahl	Meter	Maximaler Wasserstand
	<diff></diff>	Kommazahl	Meter	(BIS - VON) / 10
GEL	<typ></typ>	Auswahl	SPERRE	SPERRE
			NOSPERRE	
DGM	DGM-Datei	Pfadangabe	-	keiner - <erforderlich></erforderlich>
PRO	Profilspuren-Datei	Pfadangabe	-	keiner - <erforderlich></erforderlich>
DIST	Profilabstand	Kommazahl	Kilometer	keiner - <optional></optional>
STRECKE	<von></von>	Kommazahl	Kilometer	$-\infty$
	<bis></bis>	Kommazahl	Kilometer	$+\infty$
WSP	WSP-Datei	Pfadangabe	-	keiner - <erforderlich></erforderlich>
WSPTAG	Spalte	Text(9)	-	keiner - <erforderlich>,</erforderlich>
				falls WSP-Datei im
				WST-Format eingelesen
				wird
LIN	Linien-Datei	Pfadangabe	-	keiner - <optional></optional>
ACHSE	Gewässerachse-Datei	Pfadangabe	-	keiner - <erforderlich></erforderlich>
GEBIET	Polygon-Datei	Pfadangabe	-	keiner - <optional></optional>
SAVETRI	keine	-	-	keiner - <optional></optional>
AUSGABE	Ausgabe-Datei	Pfadangabe	-	WSPLGEN.SHP
?	-	-	-	keiner - <optional></optional>

S-L-F GmbH

B Fehlermeldungen

Wird das Programm ohne Fehler beendet, so wird als Rückgabewert der Wert 0 zurückgegeben.

Werden Warnung vom Programm erzeugt, so wird das Programm fortgesetzt und am Ende als Rückgabewert der Wert 1 zurückgegeben.

Werden Fehler vom Programm erzeugt, so wird das Programm beendet und als Rückgabewert der Wert 2 zurückgegeben.

Die erste Ziffer gibt die Fehlergruppe an. Die zweite Ziffer gibt an, ob es sich um einen Fehler oder einen Warnung handelt. Die dritte und vierte Ziffer sind nur eine fortlaufende Nummer zur genauen Identifikation der Meldung.

B.1 Kein Fehler

Rückgabewert 0

Fehler oder Warnung: Keine

Beschreibung: Es hat weder Fehler noch Warnungen gegeben.

B.2 Fehlergruppe 1xxx - Parameterauswertung

Nummer: 1201

Fehler: Keine Parameter angegeben

Beschreibung: Es wurde kein Parameter verwendet. Es müssen aber immer mindestens die Parameter -DGM für die DGM-Datei, -PRO für die Profilspuren-Datei, -ACHSE für die Gewässerachse-Datei und -WSP für die Wasserstände angegeben werden.

Nummer: 1202

Fehler: Parameter -DGM nicht angegeben

Beschreibung: Es wurde der Parameter -DGM nicht verwendet. Es müssen aber immer mindestens die Parameter -DGM für die DGM-Datei, -PRO für die Profilspuren-Datei, -ACHSE für die Gewässerachse-Datei und -WSP für die Wasserstände angegeben werden.

Nummer: 1203

Fehler: Parameter -PRO nicht angegeben

Beschreibung: Es wurde der Parameter -PRO nicht verwendet. Es müssen aber immer mindestens die Parameter -DGM für die DGM-Datei, -PRO für die Profilspuren-Datei, -ACHSE für die Gewässerachse-Datei und -WSP für die Wasserstände angegeben werden.

Nummer: 1204

Fehler: Parameter -WSP nicht angegeben

Beschreibung: Es wurde der Parameter -WSP nicht verwendet. Es müssen aber immer mindestens die Parameter -DGM für die DGM-Datei, -PRO für die Profilspuren-Datei, -ACHSE für die Gewässerachse-Datei und -WSP für die Wasserstände angegeben werden.

Nummer: 1105

Warnung: Es wurden bei einem optionalen Parameter keine Argumente angegeben

Beschreibung: Der Parameter kann auch ohne Parameter aufgerufen werden. Es werden dann nur Standardwerte verwendet. Wenn dies gewünscht ist, braucht der Parameter überhaupt nicht angegeben

zu werden. Das er doch gefunden wurde, könnte an einer falschen Aufrufsyntax liegen. Es könnte das Gleichheitszeichen fehlen oder es könnten zu viele Leerzeichen eingefügt worden sein.

Nummer: 1106

Warnung: Mehrfach verwendeter Parameter

Beschreibung: Es wurde ein Parameter mehrfach verwendet. Nur das erste Auftreten wird berücksichtigt. Es wird immer zuerst die komplette Kommandozeile bearbeitet, bevor die Parameterdatei ausgewertet wird. Diese Warnung kann leicht vorkommen, wenn ein Parameter sowohl auf der Kommandozeile angegeben wird, als auch in der Parameterdatei vorkommt.

Nummer: 1207

Fehler: Argument fehlt

Beschreibung: Es wurde ein notwendiges Argument für einen Parameter nicht angegeben. Das Gleichheitszeichen oder die Argumente nach dem Gleichheitszeichen fehlen. Möglicherweise wurden zuviele oder ungeschützte Leerzeichen verwendet (siehe Abschnit 3).

Nummer: 1108

Warnung: Parameter DELTA mit zuwenigen Argumenten aufgerufen

Beschreibung: Der Parameter DELTA kann auch ohne Parameter aufgerufen werden. Es werden dann nur Standardwerte für alle drei Argumente verwendet. Wenn dies gewünscht ist, braucht der Parameter überhaupt nicht angegeben zu werden. Das er doch gefunden wurde, könnte an einer falschen Aufrufsyntax liegen. Es könnte das Gleichheitszeichen fehlen oder es könnten zu viele Leerzeichen eingefügt worden sein.

Nummer: 1209

Fehler: Parameter DELTA mit falscher Anzahl von Argumenten aufgerufen

Beschreibung: Der Parameter DELTA darf mit verschieden vielen Parametern aufgerufen werden. Es müssen aber immer 2 Kommata verwendet werden, um die Argumente zu trennen, da sonst nicht entschieden werden kann, welche Argumente weggelasssen wurden.

Nummer: 1210

Fehler: <Von> ist größer als <Bis>

Erklärung: Das Argument <Von> ist größer als das Argument <Bis>. Die Reihenfolge der Argumente wurde wahrscheinlich nicht beachtet. Zuerst kommt <Von>, dann <Bis>, und dann <Diff>.

Nummer: 1211

Fehler: <Diff> ist kleiner als 0

Erklärung: Das Argument <Diff muss immer größer oder gleich 0 sein.

Nummer: 1212

Fehler: <Diff> ist gleich 0, aber <Von> und <Bis> sind verschieden.

Erklärung: Das Argument <Diff> darf nur den Wert 0 haben, wenn <Von> und <Bis> gleich sind. Sind <Von> und <Bis> verschieden, so wäre eine Abstufung in Schitten zu 0 Metern sinnlos.

Nummer: 1113

Warnung: <Diff> ist größer als die Differenz von <Bis> und <Von>

Erklärung: <Diff> wird vom Programm ignoriert und nur eine Wassertiefenisolinie mit dem Wert <Von> generiert.

Nummer: 1214

Fehler: Ungültiges Argument für den Parameter -GEL

Erklärung: Der Parameter darf nur mit den Zeichenketten SPERRE oder NOSPERRE verwendet werden.

Nummer: 1115

Warnung: -GEL=NOSPERRE wurde zusammen mit -LIN=<Dateiname> verwendet.

Erklärung: Die Kombination von -GEL=NOSPERRE und -LIN=<Dateiname> liefert keine sinnvollen Ergebnisse. Es wird automatisch von WSPLGEN -GEL=SPERRE angenommen.

Nummer: 1216

Fehler: -GEL=SPERRE wurde ohne -ACHSE=<Dateiname> verwendet.

Erklärung: Wenn das Gelände als Sperre dienen soll, so wird auch eine Gewässerachse benötigt, um die Lage des Flusses innerhalb der Profilspur zu bestimmen.

Nummer: 1117

Warnung: Der Parameter -AUSGABE wurde nicht angegeben.

Erklärung: Wenn der Parameter -AUSGABE nicht angegeben wurde, wird als Ausgabedateiname WSPLGEN. SHP benutzt.

Nummer: 1118

Warnung: Der Parameter -GEL wurde nicht angegeben.

Erklärung: Wenn der Parameter -GEL nicht angegeben wurde, wird -GEL=SPERRE angenommen.

Nummer: 1119

Warnung: Der Parameter -DELTA oder sein Argument < Von> wurden nicht angegeben.

Erklärung: Wenn der Parameter -DELTA oder sein Argument <Von> nicht angegeben werden, wird <Von> als Null angenommen.

Nummer: 1120

Warnung: Der Parameter -DELTA oder sein Argument <Bis> wurden nicht angegeben.

Erklärung: Wenn der Parameter -DELTA oder sein Argument <Bis> nicht angegeben werden, wird <Bis> als der maximale Wasserstand angenommen.

Nummer: 1121

Warnung: Der Parameter -DELTA oder sein Argument < Diff> wurden nicht angegeben.

Erklärung: Wenn der Parameter -DELTA oder sein Argument <Diff> nicht angegeben werden, wird <Diff> als (<Bis> minus <Von>) geteilt durch 10 angenommen.

Nummer: 1222

Fehler: Der Parameter -DGM liefert einen Dateinamen mit einer ungültigen Erweiterung.

Erklärung: Es sind nur die Erweiterungen ".ADF", ".GRD", ".SHP", ".XYZ", ".TXT" oder ".2DM" erlaubt.

Nummer: 1124

Warnung: Ein unbekannter Parameter wurde verwendet.

Erklärung: Ein Parameter oder eine Zeichenkette wurden verwendet, die WSPLGEN nicht bekannt sind. Der Parameter bzw. die Zeichenkette werden ignoriert. Wahrscheinlich wurde ein Parameter falsch geschrieben.

Nummer: 1226

Fehler: Parameter -STRECKE ohne Argumente aufgerufen

Beschreibung: Der Parameter -STRECKE braucht mindestens eines der Argumente <Von> oder <Bis>. Werden sie beide nicht angegeben, so handelt es sich sicher um einen Tippfehler in der Kommandozeile oder der Parameterdatei, wenn eine verwendet wurde.

Nummer: 1227

Fehler: Der Parameter -WSP liefert einen Dateinamen mit einer ungültigen Erweiterung.

Erklärung: Es sind nur die Erweiterungen ".DBF", ".WST", ".TXT", ".DAT" oder ".ASC" erlaubt.

Nummer: 1128

Fehler: Keine Begrenzung angegeben

Es wurde kein Begrenzungspolygon und auch keine Berechnungsstrecke angegeben. Dies ist nicht

schlimm. Es werden alle Daten verwendet.

Nummer: 1229

Fehler: Das Argument für den Parameter -DIST ist ungültig

Wahrscheinlich wurde als Argument für den Parameter -DIST keine Kommazahl angegeben.

Nummer: 1230

Fehler: Parameter -ACHSE nicht angegeben

Beschreibung: Es wurde der Parameter -ACHSE nicht verwendet. Es müssen aber immer mindestens die Parameter -DGM für die DGM-Datei, -PRO für die Profilspuren-Datei, -ACHSE für die Gewässerachse-Datei und -WSP für die Wasserstände angegeben werden.

B.3 Fehlergruppe 2xxx - Eingabedateifehler

Nummer: 2201

Fehler: Eine Eingabedatei konnte nicht zum Lesen geöffnet werden.

Erklärung: WSPLGEN hat versucht eine Eingabedatei zum Lesen zu öffnen, was nicht funktioniert hat. Die wahrscheinlichsten Ursachen sind, dass die angegebene Datei nicht existiert (also der Dateipfad oder -name falsch ist) oder das Programm (bzw. der Benutzer) nicht genug Rechte hat, die Datei zum Lesen zu öffnen.

Nummer: 2102

Warnung: Einer Profilspur wurden verschiedene Wasserstände zugewiesen

Erklärung: Es wurden einer Profilspur verschiedene Wasserstände zugewiesen. Es wird nur der zuerst gelesene Wasserstand verwendet.

Nummer: 2203

Fehler: Für eine Profilspur konnte kein Wasserstand interpoliert werden.

Erklärung: Für eine Profilspur konnte kein Wasserstand interpoliert werden, da kein Wasserstand stromab und/oder stromauf dieser Profilspur bekannt ist. Der wahrscheinlichste Grund ist, dass die Berechnungsergebnisse und die Profilspuren nicht zusammengehören.

Nummer: 2204

Fehler: Keine oder zuwenige Daten vorhanden.

Erklärung: Die Shape- oder DBF-Datei läßt sich zwar öffnen, aber es sind keine oder zuwenige Objekt in der Datei vorhanden. Mögliche Ursache könnte eine fehlerhafte Auswahl gewesen sein.

Nummer: 2205

Fehler: Die Shape- und DBF-Datei sind inkonsistent.

Erklärung: Die Shape- und DBF-Datei enthalten verschieden viele Objekte. Mögliche Ursache könnte ein fehlerhafter Export oder eine manuelle Bearbeitung gewesen sein.

Nummer: 2206

Fehler: In der Profilspuren DBF-Datei sind keine Attribute definiert.

Erklärung: In der Profilspuren DBF-Datei gibt es weder das Attribut GEW, noch das Attribut STATI-ON. Beide Attribute müssen definiert sein.

Nummer: 2207

Fehler: In der Profilspuren DBF-Datei ist das Attribut GEW nicht definiert.

Erklärung: In der Profilspuren DBF-Datei gibt es das Attribut GEW nicht, welches aber zwingend erforderlich ist.

Nummer: 2208

Fehler: In der Profilspuren DBF-Datei ist das Attribut STATION nicht definiert.

Erklärung: In der Profilspuren DBF-Datei gibt es das Attribut STATION nicht, welches aber zwingend

erforderlich ist.

Nummer: 2209

Fehler: Der Typ des Attributes GEW ist nicht Text.

Erklärung: Der Attribut-Typ von GEW muss Text (z.B. "Weser") sein.

Nummer: 2210

Fehler: Der Typ des Attributes STATION ist nicht Fliesskommazahl.

Erklärung: Der Attribut-Typ von GEW muss Fließkommazahl (z.B. 123,3451) sein.

Nummer: 2111

Warnung: Eine Profilspur wurde mehrmals definiert.

Erklärung: In der DBF-Datei wird eine Profilspur mehrmals definiert. Eine Kombination von GEW und Station kommt mehrfach vor. Es wird nur die erste Definietion einer Profilspur berücksichtigt.

Nummer: 2112

Warnung: Eine Profilspur hat keine Stützstellen.

Erklärung: Eine Profilspur hat keine Stützstellen. Damit ist der Ort undefiniert, wo später der Wasserstand auf das DGM übertragen werden soll. Diese Profilspurdefinition wird ignoriert. Sollte diese Profilspur erneut in der Datei vorkommen, so wird es dann berücksichtigt. Es kommt dann nicht zu der Warnung 2111.

Nummer: 2213

Fehler: In der Profilspuren Shape-Datei sind keine Polylinien gespeichert.

Erklärung: Profilspuren können nur als Polylinien (mit und ohne Z-Koordinaten) eingelesen werden.

Jeder andere Typ führt zu diesem Fehler

Nummer: 2214

Fehler: Eine Zeichenkette wurde nicht korrekt geschlossen.

Erklärung: In einer ASCII-Datei wird eine Zeichenkette mit einem Zeichen "begonnen, aber nicht beendet. Die Datei ist nicht korrekt formatiert und kann nicht gelesen werden.

Nummer: 2215

Fehler: Nicht genug Informationen in einer Zeile.

Erklärung: In einer ASCII-Datei sind nicht genug Informationen. Es konnten nicht genug Spalten gelesen werden. Die Datei ist nicht korrekt formatiert und kann nicht gelesen werden.

Nummer: 2216

Fehler: Konnte keine Zahl erkennen.

Erklärung: In einer ASCII-Datei wurde eine Zahl erwartet, aber es war nicht möglich eine zu erkennen. Die Datei ist nicht korrekt formatiert und kann nicht gelesen werden.

Nummer: 2217

Fehler: In der Gewässerachsen Shape-Datei sind keine Polylinien gespeichert.

Erklärung: Gewässerachsen können nur als Polylinien (mit und ohne Z-Koordinaten) eingelesen werden. Jeder andere Typ führt zu diesem Fehler.

Nummer: 2118

Warnung: Eine Gewässerachse hat weniger als 2 Stützstellen.

Erklärung: Wenn eine Gewässerachse weniger als 2 Stützstellen hat, ist damit der Ort undefiniert, wo später der Wasserstand auf das DGM übertragen werden soll. Diese Gewässerachsendefinition wird ignoriert.

Nummer: 2119

Warnung: In einer Shape-Datei sind sowohl Z-Werte als Attribute als auch über die Punkte definiert. Erklärung: Eine Shape-Datei kann vom Typ POINTZ sein und damit an den Punkten selbst Höheninformationen gespeichert haben. Wenn zusätzlich noch das Attribut 'Z' vorkommt, so kann nicht unterschieden werden, welche Informationen relevant sind. Es werden die Werte des Attributs verwendet, da sich diese bei Bedarf leichter ändern lassen.

Nummer: 2220

Fehler: In einer WST-Datei konnte der gewünschte Spaltenbezeichner nicht gefunden werden. Erklärung: Um aus einer WST-Datei die richtige Spalte mit den gewünschten Wasserständen identifizieren zu können, muss die Spaltenbeschriftung korrekt angegeben werden. Wir die Spaltenbeschriftung nicht in der WST-Datei gefunden, so wird dieser Fehler ausgegeben.

Nummer: 2221

Fehler: In der Shape-Datei mit der hydrulischen Grenze ist kein Polygon gespeichert.

Erklärung: Die Hydraulische Grenze muss als Polygon vorliegen (mit und ohne Z-Koordinaten). Jeder andere Typ führt zu diesem Fehler.

Nummer: 2222

Fehler: In der Shape-Datei mit der hydraulischen Grenze ist mehr als ein Polygon gespeichert.

Erklärung: Es darf nur eine hydraulische Grenze geben. Wenn also mehr als ein Polygon in der Shape-Datei vorliegt, kann nicht entschiden werden, welches benutzt werden soll.

Nummer: 2223

Fehler: Die hydraulische Grenze hat weniger als 3 Stützstellen.

Erklärung: Um ein "echtes" Polygon aufzuspannen, braucht man mindestens 3 Stützstellen (Ecken).

Nummer: 2124

Warnung: Eine hydraulische Grenze besteht aus mehreren Teilen d.h. sie hat Löcher.

Erklärung: Es wird nur der erste Ring berücksichtigt. Alle weiteren Ringe werden ignoriert.

Nummer: 2225

Fehler: Der erste Teil des ersten Polygon in der hydraulische Grenze ist ein "innerer" Ring.

Erklärung: "Innere" Ringe stellen Löcher in äußeren Ringen dar. Der erste Teil eines Polygon sollte immer ein äußerer Ring sein.

Nummer: 2226

Fehler: Es konnten keine X/Y-Werte für einen Knoten in einer TIN-Datei gelesen werden.

Erklärung: Es hat einen Lesefehler beim Lesen einer TIN-Datei gegeben. Die Datei ist wahrscheinlich beschädigt.

Nummer: 2227

Fehler: Es konnte kein Z-Werte für einen Knoten in einer TIN-Datei gelesen werden.

Erklärung: Es hat einen Lesefehler beim Lesen einer TIN-Datei gegeben. Die Datei ist wahrscheinlich beschädigt.

Nummer: 2297

Fehler: Falsche Anzahl von Daten.

Erklärung: Es wurde versucht eine bestimmte Anzahl an Daten zu lesen, was nicht geglückt ist. Die wahrscheinlichste Ursache ist eine falsch formatierte Datei.

Nummer: 2298

Fehler: Dateiende vorzeitig erreicht.

Erklärung: Es ist ein nicht näher bekannter Eingabefehler aufgetreten. Die wahrscheinlichste Ursache ist eine zu kurze Datei, da versucht wurde Daten zu lesen, aber das Dateiende vorzeitig erkannt wurde.

Nummer: 2299

Fehler: Es ist ein allgemeiner Eingabefehler aufgetreten.

Erklärung: Es ist ein nicht näher bekannter Eingabefehler aufgetreten. Die wahrscheinlichste Ursache sind Probleme mit dem Datenträger, von dem die Datei gelesen werden soll, oder ungewöhnliche Formatfehler der Eingabedatei.

B.4 Fehlergruppe 3xxx - Datenfehler

Nummer: 3101

Warnung: Zwei Punkte des DGM liegen zu dicht zusammen.

Erklärung: Zwei Punkte des DGM liegen zu dicht zusammen, so dass WSPLGEN sie nicht unterschieden kann. Die Z- Werte sind aber verschieden, so dass nicht entschieden werden kann, welche Höhe die korrekte ist. Es wird im Folgenden der erste Punkt benutzt.

Nummer: 3202

Fehler: Es gibt zuwenig Knoten zum Triangulieren.

Erklärung: Für das Triangulieren eines Netzes sind mindestens 3 Knotren notwendig. Der wahrscheinlichste Fall ist, dass durch die Profilspuren ein zu kleiner Bereich des DGM abgedeckt wird.

Nummer: 3204

Fehler: Es gibt weniger als 2 Profilspuren.

Erklärung: Für die sinnvolle Ausführung des Programms müssen mindestens 2 Profilspuren existieren.

Nummer: 3205

Fehler: Es gibt weniger als 2 Profilspuren in einem Gewaesser.

Erklärung: Für die sinnvolle Ausführung des Programms müssen mindestens 2 Profilspuren je Gewaesser existieren.

Nummer: 3206

Fehler: Die Gewässerachse schneidet ein Profil nicht.

Erklärung: Um eine aktuelles Überschwemmungsgebiet erzeugen zu können, muss eine Gewässerachse benutzt werden, die natürlich alle Profilspuren eines Gewässers schneiden muss, damit die Lage des Gewässers innerhalb der Profilspur ermittelt werden kann.

Nummer: 3207

Fehler: Zwei Punkte in einer Profilspur liegen zu dicht zusammen.

Erklärung: Zwei Punkte einer Profilspur liegen zu dicht zusammen, so dass WSPLGEN sie nicht unterschieden kann.

Nummer: 3208

Fehler: Zwei Punkte in einer Gewässerachse liegen zu dicht zusammen.

Erklärung: Zwei Punkte einer Gewässerachse liegen zu dicht zusammen, so dass WSPLGEN sie nicht unterschieden kann.

Nummer: 3209

Fehler: NCols ist kleiner gleich Null.

Erklärung: NCols (die Anzahl der Spalten in einer ASCII-Grid-Datei) muss verständlicherweise immer positiv sein.

Nummer: 3210

Fehler: NRows ist kleiner gleich Null.

Erklärung: NRows (die Anzahl der Zeilen in einer ASCII-Grid-Datei) muss verständlicherweise im-

mer positiv sein.

Nummer: 3211

Fehler: CellSize ist kleiner gleich Null.

Erklärung: CellSize (die Größe der Zellen in einer ASCII-Grid-Datei) muss verständlicherweise immer positiv sein.

Nummer: 3112

Warnung: Das Attribut für die Linenobjekte muss DAMM, GRABEN, ROHR1 oder ROHR2 sein.

Erklärung: Für das Attribut TYP sind nur die oben genannten Werte erlaubt. Jedes Linienobjekt mit einem anderen Attribut wird ignoriert.

Nummer: 3113

Warnung: Der Parameter -STECKE wurde verwendet, aber es wird mehr als ein Gewässer bearbeitet. Erklärung: Der Parameter -STECKE wird für alle Gewässer gleich angewendet, was in den seltensten Fällen sinnvolle Ergebnisse liefern wird.

Nummer: 3214

Fehler: Zwei Knoten liegen zu dicht zusammen.

Erklärung: Zwei Knoten liegen zu dicht zusammen, so dass WSPLGEN sie nicht unterschieden kann.

Nummer: 3115

Warnung: Zwei Projektionen stimmen nicht überein.

Erklärung: Zwei Projektionsdateien wurden gelesen und zeichenweise verglichen. Dabei wurde ein Unterschied festgestellt. Es wird immer nur die erste erfolgreich gelesene Projektion verwendet. Sollten die Projektionen tatsächlich unterschiedlich sein (und nicht nur andere Namen haben), so kann es zu sehr merkwürdigen Effekten kommen.

Nummer: 3116

Warnung: Mehr als zwei nasse Ränder gefunden.

Erklärung: Normalerweise fliesst ein Gewässer an einer Stelle in ein Gebiet hinein und an einer anderen Stelle wieder heraus. Sollten mehr als 2 Stellen gefunden werden an denen das Geländemodell nass wird, so wird diese Warnung ausgegeben. Der Fall das es mehr als 2 nasse Ränder gibt, kann aber auch durch Nebengewässer oder Inseln im Gewässer verursacht werden. Diese Warnung ist also eher als Hinweis zu verstehen.

Nummer: 3117

Warnung: Zwei Profile schneiden sich.

Erklärung: Normalerweise sollten sich Profilspuren nicht schneiden, da dies zu einer nicht eindeutigen Zuordnung der Wasserstände zum DGM führt. WSPLGEN kann zwar mit dieser Situation weiter arbeiten, doch sind die Ergebnisse in den meisten Fällen nicht zufriedenstellend.

Nummer: 3119

Warnung: Für ein Profil wurden verschiedene Wasserstände definiert.

Erklärung: Für ein Profil (genauer die Stationierung) gibt es mehrere Wasserstände. Es wird nur der erste Wasserstand verwendet.

Nummer: 3220

Warnung: Die Endpunkte einer Kante liegen zu dicht zusammen.

Erklärung: Die Endpunkte einer Kante liegen zu dicht zusammen, genauer sie sind identisch. Die

Kante hat also die Länge Null. Das DGM ist entartet.

Nummer: 3221

Warnung: Die Punkte des DGM liegen zu dicht zusammen.

Erklärung: Bei der Bildung der Ümhüllung der Profile, liegen zwei Profilendpunkte zu dicht zusam-

men.

Nummer: 3222

Warnung: Es gibt weniger als 3 Punkte beim Bilden der Umhüllung.

Erklärung: Bei der Bildung der Ümhüllung der Profile, liegen nur zwei Profilendpunkte vor. Es wird

scheinbar nur ein Profil bearbeitet. Es müssen aber mindestens zwei sein.

B.5 Ausgabedateifehler: Fehlergruppe 4xxx

Nummer: 4201

Fehler: Die Ergebnisdatei könnte nicht zum Schreiben geöffnet werden.

Erklärung: WSPLGEN hat versucht eine Ausgabedatei zum Schreiben zu öffnen, was nicht funktioniert hat. Die wahrscheinlichsten Ursachen sind, dass der angegebene Pfad nicht existiert (also der Dateipfad falsch ist) oder das Programm (bzw. der Benutzer) nicht genug Rechte hat, die Datei zum Schreiben zu öffnen.

Nummer: 4202

Fehler: Die Ergebnisdatei existierte bereits.

Erklärung: WSPLGEN hat versucht eine Ausgabedatei zum Schreiben zu öffnen, die bereits exitiert. Da keine Interaktion zwischen WSPLGEN und der GUI existiert, kann WSPLGEN nicht nachfragen, ob die Datei überschrieben werden soll. Es wird ein Fehler generiert und die GUI hat die Möglichkeit die Datei nach Rückfrage an den Benutzer zu löschen und WSPLGEN erneut zu starten. Sinnvollerweise kümmert sich die GUI vor dem ersten Starten von WSPLGEN um dieses Problem.

Nummer: 4203

Fehler: Es hat einen Fehler beim Schreiben der Ergebnisdatei gegeben.

Erklärung: WSPLGEN hat versucht die Ausgabedatei zu schreiben. Dabei hat es einen Fehler gegeben. Der wahrscheinlichste Grund ist, dass nicht genügend freier Speicherplatz auf dem Ausgabemedium (z.B. der Festplatte) zur Verfügung steht.

Nummer: 4204

Fehler: Eine Attributdefinition konnte nicht in eine DBF-Datei geschrieben werden.

Erklärung: Warum dieser Fehler austritt ist nicht bekannt. Der wahrscheinlichste Grund ist, dass nicht genügend freier Speicherplatz auf dem Ausgabemedium (z.B. der Festplatte) zur Verfügung steht.

B.6 Sonstige Fehler: Fehlergruppe 9xxx

Nummer: 9201

Fehler: Es steht nicht genug Speicher zur Verfügung.

Erklärung: Es steht nicht genug Arbeitsspeicher zur Verfügung. Das Programm muss beendet werden.

Man kann versuchen andere Programme zu beenden oder eine kleinere Gewässerstrecke zu bearbeiten (siehe Abschnitt 3.7).

Nummer: 9202

Fehler: Es hat einen unbekannten Fehler beim Reservieren von Speicher gegeben.

Erklärung: Das Programm muss beendet werden. Man kann versuchen andere Programme zu beenden oder eine kleinere Gewässerstrecke zu bearbeiten (siehe Abschnitt 3.7).

Nummer: 9103

Warnung: Es hat einen unbekannten Fehler beim Freigeben von Speicher gegeben.

Erklärung: Das Programm versucht weiterzumachen. Was dann genau passiert ist leider nicht sicher. Man sollte nach dem Beenden von WSPLGEN den Computer neu starten.

Nummer: 9197

Warnung: Es ist ein abgefangener logischer Programmfehler aufgetreten.

Erklärung: Dieser Fehler deutet auf einen Programmfehler hin, der nicht erwartet wurde. Das Programm sollte trotzdem korrekt weiterarbeiten. Der Anwender sollte sich mit den Programmierern in Verbindung setzen.

Nummer: 9298

Fehler: Es ist ein abgefangener logischer Programmfehler aufgetreten.

Erklärung: Dieser Fehler deutet auf einen Programmfehler hin, der nicht erwartet wurde. Der Anwender sollte sich mit den Programmierern in Verbindung setzen.

Nummer: 9299

Fehler: Es ist ein nicht abgefangener logischer Programmfehler aufgetreten.

Erklärung: Dieser Fehler deutet auf einen Programmfehler hin, der nicht erwartet wurde. Der Anwender sollte sich mit den Programmierern in Verbindung setzen.

C Änderungen

Version: 0.9.8, Datum: 12.03.2006

Die Dokumentation wurde begonnen.

Version: 0.9.9, Datum: 18.03.2006

Abschnitt 4.2: Es werden bei den Querprofilen auch alternative Feldnamen zugelassen.

Abschnitt 4.3: Es werden bei den Wasserständen auch alternative Feldnamen zugelassen.

Abschnitt B: Es wurden weitere Fehlermeldungen aufgenommen.

Abschnitt 4.1.2: Es wurde das fehlende Schlüsselwort CellSize in die Beschreibung aufgenommen und die Namen leserlicher gestaltet.

Version: 0.9.10, Datum: 21.03.2006

Abschnitt 5.1: Es wurden an verschiedenen Stellen Tippfehler bzgl. der "Dämme" und "Gräben" behoben. In diesem Abschnitt war aber sogar der Wertebereich des Attributes TYP nicht korrekt.

Version: 0.9.11, Datum: 12.04.2006

Abschnitte 3.7 und Anhang B, Fehlercode 1226, 3113: Es wurde der Parameter -STRECKE hinzugefügt.

Anhang B, Fehlercode 1225: Es wurde der Parameter -MAXKNOTEN hinzugefügt.

Version: 0.9.12, Datum: 07.05.2006

Anhang B, Fehlercode 3214: Es wurde eine weitere Fehlermedlung aufgenommen.

Version: 0.9.13, Datum: 23.05.2006

Anhang B, Fehlercode 3115: Es wurde eine weitere Fehlermedlung aufgenommen.

Version: 0.9.14, Datum: 14.06.2006

Abschnitt 1: Das Abbrechen von WSPLGEN zwischen den Bearbeitungsschritten wurde entfernt.

Abschnitt 2.2.2: Der Parameter -STRECKE wurde erwähnt.

Die Abschnitte 2.2.3, 2.2.1, 2.2.4 und 2.2.6 wurden in ihrer Reihenfolge vertauscht.

Abschnitt 2.6: Die Abstände wurden der tatsächlichen Vorgehensweise im Programm angepasst.

Abschnitt 3.10 wurde neu hinzugefügt.

Der Parameter -MAXKNOTEN wurde entfernt.

Es wird jetzt konsequent der Begriff "Parameter" und nicht "Option" verwendet.

Abschnitt D: Der Abschnitt wurde aktualisiert.

Version: 0.9.15, Datum: 02.07.2006

Abschnitt 4.3.3: Das neue WST-Format wird jetzt auch beschrieben.

Anhang B, Fehlercode 2220: Es wurde eine weitere Fehlermedlung aufgenommen.

Anhang B, Fehlercode 3103: Die Warnung wurde gelöscht.

Version: 0.9.15, Datum: 21.07.2006

Anhang B, Fehlercode 3115, 2118: Die Texte wurde etwas überarbeitet.

Anhang B, Fehlercodes 3116, 2221, 2222, 2223: Es wurden weitere Fehler und Warnungen aufgenommen.

Abschnitte 3.13 und 5.2: Der Parameter -GEBIET wurde eingeführt und die zugehörige Datei beschrieben.

Version: 0.9.16, Datum: 05.08.2006

Abschnitt A: die Parameter -GEBIET und -SAVETRI wurde eingeführt.

Abschnitte 3.14: Der Parameter -SAVETRI wurde eingeführt.

Abschnitt 2.2.5: Das Begrenzungspolgon wurde jetzt auch bei der Vorgehensweise kurz vorgestellt.

Abschnitt 2.3: Es wurden zwei weitere Bilder eingefügt, die die Funktionsweise des Begrenzungspolygons nach der Triangulierung verdeutlichen.

Abschnitt 2.6: Ein Bild für die Funktionsweise von Rohren vom Typ 1 wurde hinzugefügt.

Abschnitt 2.6: Das Bild für die Funktionsweise von Rohren vom Typ 2 wurde korrigiert.

Version: 0.9.16, Datum: 05.09.2006

Im gesamten Text wurden kleine Änderungen durchgeführt. Dabei handelt es sich in der Regel um Tippfehler oder Formulierungsänderungen.

Abschnitt 2.3: Der Abschnitt wurde noch etwas überarbeitet und die Abbildungen etwas geändert.

Abschnitt 5.1: Der noch fälschlicherweise verwendete alte Attributwert BRUCH wurde durch den neuen korrekten Wert GRABEN ersetzt.

Anhang B, Fehlercode 1225: Der Fehler wurde gelöscht.

Version: 0.9.17, Datum: 07.09.2006

Im gesamten Text wurde das Attribut GRADIENT durch ROHR2 ersetzt. Entsprechend heisst das Attribut ROHR nun ROHR1.

Version: 0.9.17, Datum: 20.09.2006

Abschnitt 4.1: Die verschiedenen Dateitypen für DGM-Dateien und die Erkennung ihres Formates durch die Endung der Dateinamen wurde erklärt.

Version: 0.9.18, Datum: 16.10.2006

Abschnitt 2.2.4: Es wurde eine Abbildung hinzugefügt.

Abschnitt 2.4: Es wurde eine Abbildung hinzugefügt.

Es wurde diverse Tippfehler und kleine kosmetische Veränderungen durchgeführt.

Version: 1.0.0, Datum: 19.10.2006

Abschnitt 3.16:: Es wurde der Parameter ? aufgenommen.

Anhang B, Fehlercode 3117: Der Fehler wurde hinzugefügt.

Version: 1.0.0, Datum: 17.11.2006

Anhang B, Fehlercodes 2124 und 2225: Eine Warnung und ein Fehler wurden hinzugefügt.

Abschnitt 2.2.5: Es wird nun darauf hingewiesen, dass nur EIN normales Polygon als Begrenzungspolygon benutzt wird.

Version: 1.0.0, Datum: 28.11.2006

Abschnitt 3.2: Es wurde die Verwendung von Kommentaren in Parameterdateien hinzugefügt.

Version: 1.1.5, Datum: 13.10.2007

Abschnitt 2.2.1: Das Kapitel wurde vorgezogen, da der Gewässerachse inzwischen eine deutlich wichtigere Bedeutung zukommt.

Die Abschnitte 2.2.2, 2.2.5 und 2.2.6 wurden angepasst und eine Grafik hinzugefügt, da die Bildung eines automatischen Begrenzungspolygons sich geändert hat.

In Abschnitt 2.5 wird der Parameter -DIST kurz erklärt und die Bestimmung der Anzahl der zu interpolierenden Profile.

Der Abschnitt 3.8 wurde hinzugefügt, um den Parameter -DIST zu beschreiben.

D Bekannte Probleme bzw. Schwächen

Folgende Probleme und Schwächen sind bekannt und noch nicht behoben:

1. Wenn das DGM nicht homogen ist, weichen die Knotenabstände oder besser die Kantenlängen unter Umständen stark von der mittleren Kantenlänge ab. Dies kann unter Umständen zu nicht optimalen Ergebnissen führen.