
User’s Manual for Thuban 1.0

Jonathan Coles

Jan-Oliver Wagner

Frank Koormann

User’s Manual for Thuban 1.0
by Jonathan Coles, Jan-Oliver Wagner, and Frank Koormann

Copyright © 2003 by Intevation GmbH

Revision History

Revision 1.0pre2 29-Aug-2003
Corresponds to Thuban development release 0.8.1. New: chapter on extensions.
Revision 1.0pre1 08-Aug-2003
Corresponds to Thuban development release 0.8.1.

Table of Contents
1. Introduction ..??

1.1. Installation...??
1.1.1. RPM-based GNU/Linux Systems...??

1.2. The Main Window...??

2. Session Management...??

2.1. Starting a New Session..??
2.2. Opening a Session...??
2.3. Saving a Session..??
2.4. The Session Info-Tree...??

3. Map Management..??

3.1. Adding and Removing Layers..??
3.2. Navigation...??
3.3. Object Identification..??
3.4. Object Labeling...??
3.5. The Legend..??
3.6. Exporting...??
3.7. Printing..??

4. Layer Management..??

4.1. Types of Layers...??
4.2. Properties..??
4.3. Visibility..??
4.4. Duplication..??

5. Layer Classifications..??

5.1. Editing Classifications...??
5.1.1. Visible...??
5.1.2. Symbols..??
5.1.3. Value...??
5.1.4. Label...??

5.2. Generating Classes..??

6. Projection Management..??

6.1. Selecting a Projection..??
6.2. Editing a Projection...??
6.3. Importing/Exporting Projections...??

7. Table Management..??

7.1. Table View...??
7.2. General Functionality (Menu Table)...??

7.2.1. Open...??
7.2.2. Close...??
7.2.3. Rename...??
7.2.4. Show...??
7.2.5. Join...??

7.3. Attribute Tables...??
7.3.1. Show Table...??
7.3.2. Join Table..??

iii

7.3.3. Unjoin Table...??

8. Extensions...??

8.1. Add personal extensions via thubanstart.py..??
8.2. Extensions included in Thuban package...??

8.2.1. Stable extensions..??
8.2.2. Experimental extensions...??

8.3. Writing simple extensions...??
8.3.1. hello_world.py..??
8.3.2. Registering a Command...??
8.3.3. The Thuban context..??

9. Trouble Shooting..??

A. Supported Data Sources...??

B. Supported Projections..??

iv

List of Figures
1-1. The Main Window..??
2-1. Session Info Tree..??
4-1. Properties Window...??
4-2. Properties Window...??
5-1. Properties Window...??
5-2. Generate Class..??
5-3. Custom Color Scheme..??
5-4. Unique Values...??
5-5. Uniform Distribution..??
5-6. Quantiles...??
6-1. Projection Window...??
7-1. Table View..??
7-2. Join Tables..??
9-1. Error Dialog..??

v

Chapter 1. Introduction

Thuban is an interactive geographic data viewer. It has been developed because there was no simple
interactive viewer for geographic information available as Free Software. Thuban is written in Python
and C++ and uses the wxWindows library allowing it to run on many different platforms, including
GNU/Linux and Windows.

Geographic data viewers are a necessary tool as they allow one to get a visual impression of the
positional relationship of the information that may not be apparent from simple inspection of the data
values themselves. Thuban allows the user to create a session that displays geographic data and then
explore that data through navigation and manipulation of how it is drawn. The results can then be saved
or printed.

Thuban arranges a session in a hierarchy. A session contains a map which consists of layers. Each layer
represents one kind of data set. For instance, there may be a layer for roads and another layer for
buildings. These layers can either be vector shapes or images.

1.1. Installation

Thuban is actively supported under Debian Testing (sarge), RedHat 7.2, and Windows 2000. Thuban
depends on the following packages. These packages can also be found on the Thuban Download site
(http://thuban.intevation.org/download.html).

• Python 2.2.1 (http://www.python.org)

• wxWindows 2.4 (http://www.wxwindows.org)

• wxPython 2.4 (http://www.wxpython.org)

• proj 4.4.5 Projection Library (http://www.remotesensing.org/proj/)

• GDAL 1.1.8 (http://www.remotesensing.org/gdal/)

• SQLite 2.8.3 (http://www.hwaci.com/sw/sqlite/)

• PySQLite 0.4.3 (http://pysqlite.sourceforge.net)

Along with the source codes, the download page also offers full installation packages for Debian,
Windows and RPM-based systems (Mandrake, RedHat, SuSE, etc).

1

Chapter 1. Introduction

1.1.1. RPM-based GNU/Linux Systems

1.1.1.1. Installing Binary Packages

The most wide-spread RPM-based GNU/Linux Systems are RedHat, Mandrake and SuSE. The
documentation of these distributions should contain information about how to install third-party RPM
packages. Nonetheless, a short summary is provided here.

RPM packages can be installed applying several tools. The most basic one is the command line program
"rpm". The hardware architecture is identified in the name of RPM packages, eg. ’i386’ for most
Intel/AMD architectures. If you have a different hardware architecture, where no binary RPM packages
are provided, you must rebuild binary packages from the RPM source packages first (see below). Typical
rpm commands look like:

rpm --install Thuban-0.9.0-1.i386.rpm

Depending on what you already have installed on your system, you are informed that some packages are
required, but not installed. You need to install them first. Either they are provided by your GNU/Linux
distributor or available somewhere on the Internet. The more essential and special ones are provided
together with the Thuban package.

For rpm exist some graphical user interfaces, notably kpackage, GnoRPM and xrpm.

Make yourself familiar with one of the tools and apply it to install the packages. Note, that you need to
be administrator (root) for the system to do that.

1.1.1.2. Build Binaries from Source Packages

This section describes howto build RPM install-packages from RPM source-packages. This adapts and
optimizes an install-package specifically to your system. This is especially helpful to resolve version
conflicts of dependent packages. Furthermore, install-packages for other platforms (e.g. PowerPC) can
be created.

Note: rpm must be at least version 4. Executerpm --version to find out about the version.

You need to do the following preparations to be able to build the packages as a regular user. You should
now perform the package buling as root since this might cause damage to your system.

• Create RPM directory structure: Choose a directory (e.g. $HOME/myrpm) and create the
subdirectories BUILD, RPM, SOURCES, SPECS and SRPMS. A possible command sequence for this
is:

mkdir $HOME/freegisrpm
cd $HOME/freegisrpm

2

Chapter 1. Introduction

mkdir BUILD RPMS SOURCES SPECS SRPMS

• Set environment variable RPM_DIR:

export RPM_DIR=$HOME/freegisrpm

• Create $HOME/.rpmmacros: This file sets general preferences and some specific settings for signing
packages. If you don’t have a GnuPG-key, you can skip the signature settings i.e. drop the last 4 lines.
A signature becomes important when you want to give away packages to third parties.

%packager Name Lastname <Name.Lastname@mydomain.example>

%_topdir /home/mylogin/myrpm

%_signature gpg
%_gpg_name Name Lastname
%_pgp_path ~/.gnupg
%_pgpbin /usr/bin/gpg

Now you can install any RPM source-package. It’s components are installed into the corresponding
subdirectories of your rpm-directory. Essentially these are the sources (into directory SOURCES) and
the so-called spec-file which contains all build instructions. The spec-file will go into the SPEC
directory. Example:rpm --install Thuban-0.9.0-1.src.rpm

Create install-package: Go to the directory with the spec-files and rebuild the package:

cd $HOME/mypm/SPECS
rpm -bb thuban.spec

Next, you will find the newly created package in $HOME/myrpm/RPMS/i386. If you build the package
for another architecture than i386, then the name of the directory has a corresponding name.

For documentation of RPM, either typeman rpm or rpm --help . This will provide you with
information on the various command line options of RPM. For more information see the homepage of
RPM (http://www.rpm.org/).

1.2. The Main Window

Figure 1-1. The Main Window

3

Chapter 1. Introduction

The map window shows the current state of the map and is where the user can interact with the map
using the tools.

The legend on the left displays a list of the current layers and any visible classification groups. In the
example, each shape layer has a default classification which specifies how the shapes in each layer are
drawn. Layers that are higher in the list appear “closer” to the user. The legend can be closed by clicking
on the small X in the upper right-hand region of the legend. To open it again, useMap−→Legend. The
legend is also dockable, which means that it can be detached from the main window by clicking on the
small button next to the close button. It can be attached by clicking the same button again.

The status bar displays different information depending on the current context. If the user is selecting an
item from the menu then the status bar will display a short help message indicating what each menu item
is for. If the user has a tool selected then the position of the cursor on the map is displayed.

The tool bar provides quick access to the commonly needed tools. By hovering over each button the user
can see a short messages describing what the tool does. The tools provided are Zoom In, Zoom Out, Pan,
Full Extent, Full Layer Extent, Full Shape Extent, Identify, and Label. Each of the tools will be explained
in further detail later in the manual.

4

Chapter 2. Session Management

2.1. Starting a New Session

A new session can be started fromFile−→New Session. If a session is already loaded and has been
modified without being saved a prompt will ask if the current session should be saved. A new session
consists of an empty map with no layers and no tables.

2.2. Opening a Session

A session can be opened fromFile−→Open Session. A dialog box will open allowing the user to
browse for a Thuban Session file. Thuban session files end with.thuban . Selecting a file a clickingOK
will load the session into Thuban. If a session is already loaded and has been modified without being
saved a prompt will ask if the current session should be saved.

2.3. Saving a Session

A session can be saved fromFile−→Save Session. A dialog box will open allowing the user to browse
the file system and select a place to save the session. Thuban sessions should be saved under a name
ending in.thuban . If the file already exists the user will be prompted to save under a different name or
overwrite the existing file.

2.4. The Session Info-Tree

Figure 2-1. Session Info Tree

The session info-tree is primarily intended for developers working with Thuban. It displays many of the
internal values for the session, map, and layers. It can be opened fromFile−→Session Tree.

5

Chapter 3. Map Management

The map consists of a number of layers where each layer represents a different type of data set. By
interacting with the map the user can visually explore the data.

The map can have a name that will appear in the Thuban title bar. The map name can be changed using
Map−→Rename.

3.1. Adding and Removing Layers

There are two types of layers that can be added to a map: Shape layers and image layers. Shape layers
are stored in Shapefile format, a widely used file format for storing geographic objects. These files have
the extension “.shp”. Associated with the shape file is a database file which stores attributes for each
shape in the Shape file. This file, in dBase format, has the extension “.dbf”. Both files must have the
same base name. For example, if there is a shape file named roads.shp there must also be a file roads.dbf.

Shape layers can be added to the map withMap−→Add Layer. Initially, only the “.shp” files are shown
which is enough for the selection. However, if you switch to display all files and select one of the
associated files (e.g. “.dbf”), Thuban will recognize the base name and load the corresponding Shape file.

The file dialog for Shape files allows to select multiple files. Use the shift-button together with the left
mouse button to extend the selection.

Image layers can be added to the map withMap−→Add Image Layer. It is important to select a valid
image file that has geographic data associated with it. The data can be embedded in the file itself, or in
another file. If geographic information cannot be found, Thuban will report an error.

3.2. Navigation

The map can be explored by using the navigation tools available on the tool bar or from theMap menu.

• The ZoomIn toolenlarges a region of the map. Clicking once on the map will double the
magnification and center the map on the point that was clicked. Clicking and dragging selects a region
that will be enlarged to fit the window.

• The ZoomOut toolshrinks the map so that a larger region is visible. A single click reduces the
magnification by a factor of two. Clicking and dragging selects a box such that the current contents of
the window will be scaled to fit into that box.

6

Chapter 3. Map Management

• The Pan toolallows the user to move the map around by clicking and dragging.

• The Full Extent toolrescales the viewable region so that the entire map is visible.

• The Full Layer Extent toolrescales the viewable region so that the currently selected layer fits within
the window. If no layer is selected this button will be disabled.

• The Full Shape Extent toolrescales the viewable region so that the currently selected shape fits
within the window. If the shape is a point, it is centered and the map is zoomed all the way in. If no
shape is selected this button will be disabled. This feature is especially helpful when identifying an
object related to a selected record in a tableview (see below).

3.3. Object Identification

Objects on the map can be identified using the Identify tool. Clicking on an object selects that object and
opens a dialog which shows all the table attributes for that object. Any current selection is lost. Objects
on the map are typically shapes and this document will often refer to objects as shapes.

3.4. Object Labeling

Objects can be labeled using the Label tool. Clicking on an object selects that object and opens a dialog
which displays the table attributes for that object. An attribute can be selected to be the label on the map.
The label will be placed at the center of the shape. Clicking on an object that already has a label will
remove the label.

3.5. The Legend

The Legend provides an overview of the layers in the map. Layers that appear higher in the legend will
appear “closer” to the user. If a layer supports classification (currently, only shape layers have this
feature) then the classification groups will be shown below each layer. The properties for each group are
also displayed with a small graphic. Polygon layers appear as rectangles, lines appear as curved lines,
and points appear as circles.

Along the top of the legend is a toolbar which allows quick access to some of the layer manipulation
options underMap.

• The Move Layer to Top toolraises the selected layer to the top of the map.

• The Move Layer Up toolraises the selected layer one level.

• The Move Layer Down toollowers the selected layer one level.

7

Chapter 3. Map Management

• The Move Layer to Bottom toollowers the selected layer to the bottom of the map.

• The Visible tool shows the selected layer in the map if it was hidden.

• The Invisible tool hides the selected layer in the map.

• The Properties toolopens the layer’s properties dialog box. Double-clicking on a layer or a group of
a layer will open the properties dialog for that layer.

Along the bottom of the legend is the scalebar. The scalebar will be available if there are any layers and
the map has a projection set.

3.6. Exporting

Under Windows, maps can be exported in Enhanced Metafile format (.wmf) from Map−→Export for
use in reports, presentations, or further modification. The current map view, legend, and, if available,
scalebar are exported. Under other platforms this option is not available. Clicking this menu item open a
file selection dialog that lets the user select a location to export the map.

3.7. Printing

The map can be printed usingMap−→Print. The current map view, legend, and, if available, scalebar
are printed. A standard printing dialog will open allowing the user to configure the printer. This dialog
will differ depending on which platform Thuban is running.

8

Chapter 4. Layer Management

4.1. Types of Layers

There are two types of layers supported by Thuban: shape layers and image layers. Shape layers consist
of vector based shapes with geo-referenced coordinates. There are three types of supported shapes:
polygons, lines (arc), and points. Image layers can be any image file format supported by the Geo-spatial
Data Abstraction Library (GDAL). The images must have geographic coordinate data either embedded
within the file or in a separate file that is in the same directory as the image file. GeoTIFF files work very
well with Thuban and were designed specifically to be image layers in GIS programs.

All actions in theLayer menu act on the currently selected layer in the legend.

4.2. Properties

To view the properties for a layer it must first be selected in the legend. The menu option
Layer−→Properties opens a dialog that displays a layer’s properties. All layers have a title which can
be modified in the text field provided. The type of layer is also shows. If the type is a type of shape
(polygon, arc, point) the classification table will be shown. Image layers have no other properties other
than title and type.

Figure 4-1. Properties Window

Figure 4-2. Properties Window

4.3. Visibility

Sometimes it is not desirable to view all layers at the same time. Some layers may take a long time to
draw and so while navigating around the map the user may not want to wait for the map to redraw all the

9

Chapter 4. Layer Management

layers each time the map is changed. Each layer can be independently turned on or off using the
Layer−→Show or Layer−→Hide options respectively.

4.4. Duplication

Layers and all their properties, including classifications, can be duplicated usingLayer−→Duplicate.
Duplicating a layer is useful if the user wishes to model a layer in several different ways. Even though
the layers overlap, by carefully selecting the shape properties it is possible to display several pieces of
information at once. For example, one copy of a roads layer may be classified on a length property and
another copy may be classified on a type property. If the length property was expressed with color and
the type property expressed with line thickness then it would be possible to view both classifications by
placing the type property copy over the length property copy.

10

Chapter 5. Layer Classifications

A layer classification is a way of assigning drawing properties to groups of shapes based on attributes
stored in the layer’s table. Only layer’s with shapes can have a classification; image layers cannot be
classified.

A classification consists of a number of groups, each group having a value or range of values to match
against, and symbol properties which control how a shape is drawn on the map. The user selects which
field in the table is used by the classification and when the map is drawn the value for that field for each
shape is compared with each group’s value. The properties of the first group to match are used to draw
the shape. This allows the user to get a visual impression of not only how the data is laid out but also
what kind of data lies where.

A layer always has a classification. When a new layer is added to the map, a default classification is
created with the DEFAULT group. This group cannot be removed but can be hidden (see below). Every
shape in the layer, regardless of its attributes, will match this group if no other group matches.

5.1. Editing Classifications

A layer’s classification can be modified under the properties dialog (Layer−→Properties). The layer’s
classification field can be set to None, which simply assigns a DEFAULT group to the classification. No
new groups can be added to the classification if the field is None. The user must first select a field to
classify on. New groups can be added to the classification with theAdd button.

To apply the changes to the map the user can click eitherTry or OK. Try will not close the dialog box,
allowing the user to see how the classification changes the map.Revert will undo the last classification
applied to the map.OK will commit the changes and close the dialog. The user will be unable to undo
the changes.Close simply closes the dialog box. If any changes have not been applied withTry the
changes will not be applied to the map.

Figure 5-1. Properties Window

The order of the groups in the classification is significant except for the DEFAULT group, which remains
at the top. When shapes are matched against groups the matching begins at the first group after the
DEFAULT group so that groups higher in the list will be checked first. Matching for a given shape will
stop at the first group that matches. The user can useMove Up andMove Down to change the order of
the groups. The DEFAULT group will always match a shape that hasn’t matched another group.

11

Chapter 5. Layer Classifications

5.1.1. Visible

The Visible column has check-boxes that determine whether a classification group will be displayed in
the legend. This is useful if the user knows that the groups completely cover the data set and don’t want
the DEFAULT group to be displayed in the legend and on a printout.

5.1.2. Symbols

Each type of shape has its own type of symbol. Thuban supports three types of shapes: polygons, lines,
and points. Polygons and points have outline and fill color, while lines have only line color. Each group
has associated symbol properties. To edit the symbol properties for a group the user can double click on
the Symbol column or select a group and click theEdit Symbol button.

5.1.3. Value

The Value column of the classification table is the value that will be matched when the map is being
drawn. The type of data that can entered into this field depends on the type of data of the classification
field.

If the field is of type Text, anything entered into the field is valid. The text will be compared literally to
the value of the shape attribute, including case sensitivity. If the type is Integer, then any valid integer
may be entered. In addition, with special syntax, a range of values can be entered. A range fromstart

to end inclusive is specified like this:[start;end] . The exclusive range is specified like this:
]start;end[. Ranges can include infinity like this:[-oo;oo] . Field types can also be of type
Decimal. They represent any rational number and can be used in ranges as well.

5.1.4. Label

By default, the text that is displayed for a group in the legend is the value for that group. The label can
substitute a more descriptive term in the legend.

5.2. Generating Classes

Figure 5-2. Generate Class

12

Chapter 5. Layer Classifications

Creating a classification by hand can be tedious. Thuban, therefore, provides a means of generating an
entire classification at once while still giving the user control over how it appears. ClickingGenerate
Class opens theGenerate Classification dialog. Under theGenerate pull down there are at
most three different ways to generate classifications: Unique Values, Uniform Distribution, and
Quantiles. Some options may not be available if the data type for the field does not support them. For
instance,Uniform Distribution doesn’t make sense for a Text field.

For every way of generating a classification, a color scheme must be selected. Thuban provides several
different color schemes that affect how the group properties change over the classification. It may be
desirable that only certain properties change over the classification. If the shape type is a polygon or a
point then theFix Border Color option will be available. This allows the user to select a border color for
all classification groups. It is also possible to create a custom color scheme. Selecting this option will
display two symbols: the one of the left has the properties of the first group and the one on the right has
the properties of the last group. Thuban will interpolate between these two properties to generate the
other groups.

Figure 5-3. Custom Color Scheme

The Unique Values option lets the user select specific values that appear in the table. ClickingRetrieve
From Table searches the table for all unique values and displays them in the list on the left. Items can be
selected and moved to the list on the right. Each list can be sorted or reversed for easier searching. The
classification that is generated will be in the same order as the list on the right.

Figure 5-4. Unique Values

The Uniform Distribution option creates a user specified number of groups of ranges such that each
range covers equal intervals. The minimum and maximum values can automatically be retrieved from the
table by clickingRetrieve From Table. The stepping is how large each interval is. Adjusting this value
will automatically recalculate how many groups is appropriate.

Figure 5-5. Uniform Distribution

The Quantiles option generates ranges based on the number of items in the table. For example, by
specifying five groups Thuban will generate five groups with appropriate ranges such that 20% of the
table data is in each group. If it is impossible to generate exact groupings, Thuban will issue a warning
but allow the user to continue.

13

Chapter 5. Layer Classifications

Figure 5-6. Quantiles

14

Chapter 6. Projection Management

Projections control how the geographic data is displayed on the screen. If multiple layers are loaded into
Thuban where the geographic data is in a different projection system, then the user must specify a
projection for each layer. The user must also tell Thuban which projection the map is in. This can be the
same as the layers or a different projection in which case the layers are reprojected into that space. The
map projection can be set usingMap−→Projection and the layer projection can be set using
Layer−→Projection.

Figure 6-1. Projection Window

Thuban is distributed with a sample collection of projections. The user can create new projections and
make them available to all future Thuban sessions. They may also be exported and imported so that
custom projections can be distributed.

6.1. Selecting a Projection

The available projections are listed on the left. If the layer or map already has a projection it will initially
be highlighted and will end with(current) . Selecting<None> will cause Thuban to use the data as it
appears in the source file and will not use a projection.

6.2. Editing a Projection

Whenever a projection is selected from the list its properties are displayed on the right. These properties
can be changed and the changes saved to the selected projection usingUpdate. Only a projection that
comes from a file can be updated, so if the current layer’s projection is selected,Update will be disabled.
Add to List adds the projection to the list of available projections as a new entry, and thus makes it
available to future Thuban sessions. ClickingNew will create an entirely new, empty projection. The
Remove button will permanently remove a projection from the list of available projections.

To apply the selected projection to the map the user can click eitherTry or OK. Try will not close the
dialog box, allowing the user to see how the projeciton changes the map.Revert will undo the last
projection applied to the map.OK will commit the changes and close the dialog. The user will be unable
to undo the changes.Close simply closes the dialog box. If no selection has been applied withTry the
selection will not be applied to the map.

15

Chapter 6. Projection Management

6.3. Importing/Exporting Projections

The projections that appear in the list of available projections can be exported to another file that the user
chooses. By selecting one or more projections and clickingExport the user will be able to select a file in
which to store those projections. The file can then be distributed to other Thuban users. To import a
projection file the user can clickImport. The imported projections are added to the list and are then
available to the current session and any future Thuban sessions.

16

Chapter 7. Table Management

Thuban distinguishes two different types of tables: Attribute tables (which belong to a layer) and normal
data tables. Both provide the same general functionality with the difference that actions on an attribute
table might also effect the map display.

7.1. Table View

Figure 7-1. Table View

Thuban provides a standard dialog to display table contents, the Table View. The view has five sections:
The title, selections, the table grid, export functions, and the status bar.

The title bar identifies the table with its name.

The selections box let the user perform simple analysis on the data based on comparisons: The first
choice must be a field identifier of the table, the second choice determines the type of comparison. The
third choice can be either a specific value (interpreted as numerical or string depending on the type of the
first field) or a second field identifier. Thus you can perform analysis like selecting all records where
population > 10000 or cars_per_inhabitant < bikes_per_inhabitant (note that the field
names are only explanatory, the dBase files allow only 11 character field names). Selections can be
combined either by applying a selection only on a previously selected set of records or by adding the
results of a selection to a previous set. The default is that a selection replaces earlier results.

The table grid shows the contents of the table (one record per row), with highlighted selection results.
Columns and rows can be resized.

The contents of a table can be exported into a file, either dBase format (DBF) or comma separated values
(CSV). TheExport button raises a file dialog to specify a path and file name, the export type is
determined by the file extension (either .dbf or .csv). TheExport Selection button works similarly but
exports only the selected records. TheClose button closes the table view window. This is different from
the menu itemTable−→Close which unloads the table from Thuban.

The status bar displays some statistics about the table and optional selection results.

17

Chapter 7. Table Management

7.2. General Functionality (Menu Table)

The general functions affect all tables open in Thuban. Attribute tables are considered here as normal
data tables (with the exception that they cannot be closed).

7.2.1. Open

TheTable−→Open item raises a file dialog to let you select a dBase file from the file system to be
loaded into Thuban read-only. OnOK the selected file is loaded and a table view is opened.

7.2.2. Close

TheTable−→Close item raises a dialog listing the currently open data tables (loaded via
Table−→Open). Selected tables are dereferenced on confirmation. Since tables are opened read-only
the contents of the tables are not affected. Any open views of the tables are closed as well. Tables used in
a join cannot be closed.

7.2.3. Rename

Table−→Rename changes the table title.

7.2.4. Show

TheTable−→Show item raises a list of available tables (explicitly loaded, attribute tables, results of a
join). Selected tables are show in tables views onOK.

7.2.5. Join

Figure 7-2. Join Tables

TheTable−→Join item raises a dialog to specify the two tables to be joined. The join results in a new
table named ’Join of "left table" and "right table"’. The dialog lets you select the two tables to be joined
and the two fields the join has to be performed on. By default, the new table contains only those records
which are matched by the join. If you want to preserve the records of the left table you can perform an

18

Chapter 7. Table Management

outer join. The fields from the right table for records not matched by the join are filled withNone in this
case.

7.3. Attribute Tables

To clearly separate between both types of tables (data and attribute), Thuban provides functionality
regarding the attribute tables under theLayer menu.

7.3.1. Show Table

Layer−→Show Table opens the attribute table of the currently active layer in a table view. In addition to
the functionality described above selections affect also the map display: objects related to selected
records are highlighted.

7.3.2. Join Table

Unlike the join described above, the join does not result in a new table. The attribute table of the
currently active layer is the left table and other tables are joined to this table. The results of the join are
available for classification. As a consequence, the join cannot result in fewer records than the source
attribute table. The user is warned if the right table does not fulfill this constraint. An outer join must be
used in such cases.

7.3.3. Unjoin Table

As said above, a normal table cannot be closed while it is still used in a join. While the joined table
resulting from a join of normal tables can be simply closed (and thereby dereferencing the source tables),
this is not possible for attribute tables. Hence joins on attribute tables must be solved explicitly. This is
what theLayer−→Unjoin Table item is used for: The last join for the currently active layer is solved.

19

Chapter 8. Extensions

Thuban is designed to be extensible. The term Extension is used as a general term for anything that
extends Thuban. This chapter introduces into some oppportunities how to add and handle extra
functionality developed by your own or third parties.

8.1. Add personal extensions via thubanstart.py

After Thuban has been started for the first time, a directory .thuban is created within your home
directory. There you can add a file thubanstart.py which will be imported by Thuban at start-up. It is
recommended to add only import-statements to this file to keep the actual code of extensions separate.

The modules to import must either be found through the environment variable PYTHONPATH or
directly be placed into the .thuban-directory.

As an example, copy the file examples/simple_extensions/hello_world.py of the Thuban source code into
the .thuban-directory of your home directory. Now add add the statement import hello_world to the file
thubanstart.py and run Thuban. You will notice an additional menuExtensions where the new item for
the Hello-World extension is placed - select it to see the Hello-World message.

8.2. Extensions included in Thuban package

The extensions described in this section are part of the Thuban package, but not activated by default. You
will find them in the Thuban installation directory underExtensions/ . Activate them as personal
extensions via PYTHONPATH as described in the previous section. Stable extensions will appear under
the menuExtensions and extensions which are in experimental state and therefore not fully functional
underExperimental.

8.2.1. Stable extensions

These extensions provide extra-functionality to Thuban that has not (yet) been integrated in the main
application. They are considered to be free of bugs, but may be further polished with helpful user
interactions.

8.2.1.1. gns2shp

This tool converts data of the Geospatial Names Server (GNS, see http://www.nima.mil/gns) into
Shapefile format. The above web-site offer to download named places information grouped by countries

20

Chapter 8. Extensions

for all of the world except USA for which other data are provided.

If you download and unpack a package, you will have a text-file with suffix .txt. Selecting such a file via
gns2shp will create the corresponding Shapefile with the same basename and place it in the same
direcory. Afterwards it is automatically loaded into Thuban. The Shapefile will not automatically be
delete afterwards.

The gns2shp.py module can also be executed on the command line for batch processing purposes.

A sample (ls.txt for Liechtenstein) is included in the directoryExtensions/gns2shp/test .

8.2.2. Experimental extensions

All all of these functions have to be handled with care, since they are neither complete nor well tested.
They are to be seen as a proof-of-concept and may additionally in some cases of practical help.

Any interest on further improvement of these extensions should be communicated towards the developer
and user community.

8.2.2.1. importAPR

This command offer to load an ESRI® ArcView® project file (suffix .apr) and convert it for use within
Thuban. After selecting a apr-file to load, a list will be presented that offers to select one of the views of
the apr-file, provided there is more than one. Furthermore, the Session Info-Tree is extended with a
complete representation of the parsed apr-file.

The legend of Thuban does not yet cover all of the elements as supported by the legend of ArcView®.
Therefore, the Thuban map will look different. Furthermore, the apr-format is a proprietary format, not
openly documented. Therefore, the interpretation is partly based on reverse engeneering and good
guessing.

The file-paths within the apr-file may not fit and potentially are subject to fix in the apr-file. You can do
this applying any text editor. The paths are either absolute or relative from where Thuban has been
started.

A sample for the Iceland data is included asExtensions/importAPR/samples/iceland.apr . The
file-paths are relative from the Thuban main directory.

21

Chapter 8. Extensions

8.3. Writing simple extensions

Writing an extension for Thuban basically means to implement the extra functionality in Python with all
of the Thuban classes, methods and variables available.

All classes and their methods are documented in the source code (see their doc-strings). Here is an
example from Thuban/Model/layer.py that describes some of the methods of a Layer object:

class BaseLayer(TitledObject, Modifiable):

"""Base class for the layers."""

def __init__(self, title, visible = True, projection = None):
"""Initialize the layer.

title -- the title
visible -- boolean. If true the layer is visible.
"""
TitledObject.__init__(self, title)
Modifiable.__init__(self)
self.visible = visible
self.projection = projection

def Visible(self):
"""Return true if layer is visible"""
return self.visible

def SetVisible(self, visible):
"""Set the layer’s visibility."""
self.visible = visible
self.issue(LAYER_VISIBILITY_CHANGED, self)

def HasClassification(self):
"""Determine if this layer support classifications."""

...

This example intends to give you an impression of the source-code-level documentation. You have to
make yourself familiar with the Python programming language to understand some special code
elements.

8.3.1. hello_world.py

Traditionally, the first example should welcome the world. Most of the code handles the frame for
integrating a menu item into Thuban while the actual raising of a message is done in a single line.

22

Chapter 8. Extensions

Copyright (C) 2003 by Intevation GmbH
Authors:
Jan-Oliver Wagner <jan@intevation.de>
#
This program is free software under the GPL (>=v2)
Read the file COPYING coming with Thuban for details.

"""
Extend Thuban with a sample Hello World to demonstrate simple
extensions.
"""

__version__ = ’$Revision: 1.22 $’

use _() already now for all strings that may later be translated
from Thuban import _

Thuban has named commands which can be registered in the central
instance registry.
from Thuban.UI.command import registry, Command

The instance of the main menu of the Thuban application
See Thuban/UI/menu.py for the API of the Menu class
from Thuban.UI.mainwindow import main_menu

def hello_world_dialog(context):
"""Just raise a simple dialog to greet the world.

context -- The Thuban context.
"""
context.mainwindow.RunMessageBox(_(’Hello World’), _(’Hello World!’))

create a new command and register it
registry.Add(Command(’hello_world’, _(’Hello World’), hello_world_dialog,

helptext = _(’Welcome everyone on this planet’)))

find the extensions menu (create it anew if not found)
extensions_menu = main_menu.find_menu(’extensions’)
if extensions_menu is None:

extensions_menu = main_menu.InsertMenu(’extensions’, _(’E&xtensions’))

finally bind the new command with an entry in the extensions menu
extensions_menu.InsertItem(’hello_world’)

23

Chapter 8. Extensions

8.3.2. Registering a Command

Mainly, our new function has to be registered to the Thuban framework in order to connect it to the
menu. A registered command can also be connected to e.g. a toolbar button.

The instances and classes for this are imported at the beginning. Any code not inside a method or class is
directly executed when the source-code module is imported. Therefore, the second part of this example
consist of the plain statements to create a new Command and to add it to the menu.

By convention, it looks for a menu registered as “extensions” to insert the new command. If it does not
exist yet, it gets created. It is advisable to copy this code for any of your extensions.

8.3.3. The Thuban context

A registered command that is called, always receives the Thuban context. This instance provides our
method with hook references to all important components of the Thuban application.

In the example hello_world.py, our function uses the mainwindow component which offers a method to
raise a message dialog. In total there are three hooks:

• application: This object is the instance of the Thuban Application class. Except maybe for loading or
savinf sessions, you will not need this object for a simple extension. See Thuban/UI/application.py for
the API.

• session: The instance of the current session. It manages the sessions’ map and tables. You can set and
remove the map or tables. In may also get the map object. However, you should know that internally it
is already prepared to handle many maps. Therfore, currently you would always receive a list with
exactlty one element. In the future, if there are more than one map, you will not know which one is the
currently display one and therefore you should use the mainwindow as hook to find the currently
displayed map. See Thuban/Model/session.py for the API.

• mainwindow: The mainwindow object is central to manage various GUI things such as the Legend
sub-window. Most notably, you get access to the canvas which is the window part where the map is
drawn. The canvas knows, which map it currently draws and therefore you get the current map via
context.mainwindow.canvas.Map(). See Thuban/UI/mainwindow.py for the API.

24

Chapter 9. Trouble Shooting

Here are a few problems that users have encountered when first using Thuban.

• After adding two or more layers nothing is drawn in the map window.

This is probably because the layers have different projections. Projections must be set on all layers and
on the map itself if the layers’ projections are different.

• Thuban crashes on startup with the errorNameError: global name ’False’ is not defined .

True andFalse were only introduced in Python 2.2.1. Thuban depends on at least Python 2.2.1.

• After compiling Thuban, Thuban crashes with an error similar toImportError:

/usr/local//lib/thuban/Thuban/../Lib/wxproj.so: undefined symbol:

__gxx_personality_v0

Thuban depends on the wxWindows library. If Thuban is compiled with an incompatible version of
the compiler than wxWindows was compiled with this error may occur. Try compiling with a different
version of the compiler.

If an error occurs Thuban will display a dialog indicating the error before closing. The text should be
copied and reported to the Intevation bugtracker (http://thuban.intevation.org/bugtracker.html). More
information about the system is available fromHelp−→About box. This should also be included in the
bug report.

Figure 9-1. Error Dialog

25

Appendix A. Supported Data Sources

Shapefile

The Shapefile format has become a standard format for saving geographic vector information. It
supports polygons, lines, and points. Technical Specification.
(http://www.esri.com/library/whitepapers/pdfs/shapefile.pdf)

dBase file

dBase files are used to store the attributes for each layer. This is closely associated with the
Shapefile format. For detailed specifications on the correct format of a dBase file used with Thuban
please see the Technical Specification for the Shapefile format above.

Raster files

Binding the GDAL library Thuban supports numerous raster file formats, see GDAL format list
(http://www.remotesensing.org/gdal/formats_list.html) for details.

Most commonly used is theTIFF/GeoTIFFformat: Raster maps are provided as TIFF images, with
an additional "world file" storing the geographic reference (usually with an extension ".tfw").

26

Appendix B. Supported Projections

The following types of projections are directly support by Thuban. The specific values for each are
provided by the user to create custom projections. Thuban comes with predefined projections which are
available through the Projections dialog.

• Geographic

• Ellipsoid

• Source Data : either Degrees or Radians

• Lambert Conic Conformal

• Ellipsoid

• Latitude of 1st standard parallel

• Latitude of 2nd standard parallel

• Central Meridian

• Latitude of Origin

• False Easting (meters)

• False Northing (meters)

• Transverse Mercator

• Ellipsoid

• Latitude of origin

• Longitude at central meridian

• Scale Factor at central meridian

• False Easting (meters)

• False Northing (meters)

• Universal Transverse Mercator

• Ellipsoid

• Zone (can be guessed appling the Propose button)

• Southern Hemisphere flag

Thuban comes with a sample set of map projections for various European countries. Apart from the basic
projection they differ especially in their parameterization:

• Belgium Datum 1972 (Lambert Conic Conformal)

27

Appendix B. Supported Projections

• Gauss-Boaga Zone 1 (Italy, Transverse Mercartor)

• Gauss-Krueger Zone 2 (Germany, Transverse Mercartor)

• Reseau Geodesique Francaise (France, Lambert Conic Conformal)

• UK National Grid (United Kingdom, Transverse Mercartor)

Thuban uses the comprehensive PROJ library for projections. PROJ provides more than the four
commonly used projections described above. If needed Thuban can be easily extended to a new
projection covered by PROJ.

28

