
raumbezogene
informationssysteme

deegree owsWatch v2.5

lat/lon GmbH

Aennchenstr. 19
53177 Bonn
Germany
Tel ++49 - 228 - 184 96-0
Fax ++49 - 228 - 184 96-29

info@lat-lon.de

www.lat-lon.de

Dept. of Geography
Bonn University
Meckenheimer Allee 166
53115 Bonn

Tel. ++49 228 732098

raumbezogene
informationssysteme

Change log

Date Description Author

2008-11-06 Document created Moataz Elmasry

2008-11-21 Remove typos Judit Mays

2009-10-21 Update for upcomming release Judit Mays

Table of Contents
1 Introduction..4

2 Download/ Installation...5
2.1 Prerequisites...5

3 Configuration..6
3.1 Servlet Configuration...6

3.2 Tomcat Configurations...6

3.3 owsWatch configuration...7

3.3.1 ws:GeneralConfiguration..7

3.3.2 ws:ServiceConfiguration...8

3.4 owsWatch services...8

3.5 Resetting owsWatch...9

4 Using owsWatch..10
4.1 Monitoring the services..10

4.2 Adding/ editing service monitors...11

5 Adding and modifying test types..............................13
5.1 Adding a new test type...13

5.2 Adding/editing a test type. The client side of the story...............13

Appendix A Configuration file for owsWatch................16

Appendix B Created Tests for the different services....19

Appendix C Example for a web.xml file for owsWatch. .22

deegree owsWatch v2.3 2

raumbezogene
informationssysteme

Index of Tables

Illustration Index
Figure 1: owsWatch main window..10

Figure 2: Service Manager window to add/edit tests..11

deegree owsWatch v2.3 3

raumbezogene
informationssysteme

1 Introduction

deegree is a Java Framework offering the main building blocks for Spatial Data
Infrastructure (SDIs). Its entire architecture is developed using standards of the
Open Geospatial Consortium (OGC) and ISO Technical Committee 211 -
Geographic information / Geoinformatics (ISO/TC 211). deegree encompasses
OGC Web Services as well as clients. deegree is Free Software protected by the
GNU Lesser General Public License (GNU LGPL) and is accessible at
www.deegree.org

owsWatch is a web-based application used to monitor the different services of
deegree like WMS, WFS, CSW, etc...
owsWatch can be mainly considered an alarm that notifies the user per email or
also through its interface in case any of the monitored services is experiencing
high traffic that caused response latency or the service suffered an altogether
failure. A monitored service means that the user configures a certain request
againest that service (e.x. GetCapabilities from a WMS) with constraints on that
test (e.x. Timeout) to test if the service is live at all times.

Besides owsWatch, deegree comprises a number of additional services and
clients. A complete list of deegree components can be found using the following
URL and links:

http://www.lat-lon.de → Products

Downloads of packaged deegree components can be found via:

http://www.deegree.org → Download

deegree owsWatch v2.3 4

http://www.deegree.org/
http://www.lat-lon.de/
http://www.deegree.org/

raumbezogene
informationssysteme

2 Download/ Installation

2.1 Prerequisites

To run deegree2 owsWatch you need:

➢ Java (JRE or JSDK) version 1.5.x

➢ Tomcat 5.5.x

For installation of these components refer to the corresponding documentation at
java.sun.com and tomcat.apache.org respectively.

owsWatch is a web application which can be checked out from the SVN1 under
http://wald.intevation.org/projects/deegree. The project can then be found in
apps/owswatch/

1 SVN is a subversion Framework (revision control system), that allows mutliple programmers to

work on the same project and the same code and synchronize their work together without running
into code conflict. If you want to know more about SNVs try using the svn tool from
http://subclipse.tigris.org/

deegree owsWatch v2.3 5

http://subclipse.tigris.org/

raumbezogene
informationssysteme

3 Configuration

A servlet is an object that is hosted by a servlet container (like tomcat). It
receives requests through HTTP protocol (e.g. send by a browser) and creates a
proper response according to that request; just like any computer program that
receives an input and produces an output. The main purpose of servlets as
objects is that they are mainly designed to be accessed remotely.

3.1 Servlet Configuration

To use the servlet we will need to create a new web application. Create a folder
with any name, this will act as the main project folder. In this folder create
another folder called “WEB-INF”, which will hold the servlet information and
inside it shall exist the xml file “web.xml” (deployment descriptor) and the “lib”
folder. The lib folder contains all the needed libraries to run the servlet. In the
“web.xml” create a <servlet> tag with the servlet class
org.deegree.enterprise.servlet.ChartServlet. Also add two init-param elements.
The first is “errorMsg” which shall hold the path of an error image, in case the
chart could not be created. The second parameter is “configFile” which is the
input xml configuration of the servlet. With it you can control how the output
chart should look. The configuration file structure will be explained in section 3.2.
Please consult Appendix A for a web.xml example that you can use directly in
your web application (do not forget to update the paths of your init-param
elements according to your configuration). Appendix C contains an example
web.xml for owsWatch.

3.2 Tomcat Configurations

Apache Tomcat is a web container, or application server developed at the
Apache Software Foundation (ASF). Tomcat implements the Java Servlet and the
JavaServer Pages (JSP) specifications from Sun Microsystems, providing an
environment for Java code to run in cooperation with a web server. It adds tools
for configuration and management but can also be configured by editing
configuration files that are normally XML-formatted. Tomcat includes its own
internal HTTP server.

After Downloading and unpacking tomcat, please read the tomcat documentation
on the apache website and install tomcat properly. After installing tomcat you
need to create our context in tomcat in order to run our servlet, you need to do
the following.

1. In “tomcat/conf” folder you need to create a folder with the path
“./Catalina/localhost”

2. under “tomcat/conf/Catalina/localhost” create an xml file called
“owswatch.xml”, which will act as the web context.

deegree owsWatch v2.3 6

raumbezogene
informationssysteme

3. The content of this xml file is as follows:

<Context displayName="owsWatch" docBase="my_webapp_path" ></Context>

where the value of the attribute docBase is the absolute path to your web
application folder as explained in section 3.1

4. To start tomcat use your command line tool and run the batch file
“./bin/startup.bat” in tomcat directory (Windows), or bin/catalina.sh (Linux)

By this we are done with necessary tomcat configuration. You might want to
provide more memory resources than the default of 64M to your Tomcat. Please
refer to tomcat documentation or the deegree wiki at
http://wiki.deegree.org/deegreeWiki/HowToDealWithOutOfMemoryError.

3.3 owsWatch configuration

Basically owsWatch is already preconfigured, so a common user or someone who
is starting to use it probably will not need to change the configurations. If you
feel that you fall in this category you can just skip this section and jump to
Chapter 4 Using owsWatch

In the owsWatch home folder exists the configuration file for the application
under WEB-INF/conf/owswatch/owswatch_configuration.xml. We will explain the
usage of the different elements in this configuration file

3.3.1 ws:GeneralConfiguration

The ws:GeneralConfiguration element contains general characteristics to the
usage of the owsWatch interface, which are:

➢ GlobalRefreshRate can be used to set how often the application shall be
refreshed. The time unit used is minute

➢ Users includes block(s) of User which sets access to the different users
and their roles (roles is not yet implemented, so all users have the same
privileges at the moment)

➢ Mail contains the the Email info like the sender email and the email server
address. These information will be used to send the error emails(i.e. They
represent the sender) if a service stopped working or produced an error.

➢ Location contains few locations which are used by the application. These
locations are:

1) ProtocolLocation: This should be a folder path, where the protocol
itself is somehow similar to the log, in which the test results are
written to. Note that each Test has its own protocol file and that a
new protocol file is created at the beginning of each month without

deegree owsWatch v2.3 7

raumbezogene
informationssysteme

the erasing the old protocol files, so according to the user needs,
he/she might want to regularly cleanup this folder

2) ServiceInstanceLocation: This is the path to the xml file that
contains the service configurations. This file is actually best edited
through the owsWatch and not manually, but it is still a possibility. It
will be explained later in this documentation how to edit the file
through a GUI and per hand.

3.3.2 ws:ServiceConfiguration

These configurations affect the tests that can be added to monitor the services
like the WMS, WFS, etc...

➢ TestInterval contains Value elements which is displayed as a drop down
box. The time unit is minutes and it indicates how often a certain test
should be executed. The drop down box is found in the service
configuration (add/edit) dialogue of owsWatch

➢ Services contain several Service elements. A Service in this context is to
be considered an OGC service and the element contains a description of
this service. A service element contains the following attributes:

1- type: the OGC service type. The service name could be prefixed with
OGC: but it is not a must

2- version: of the service

For the moment we will skip explaining the rest of the Service element and
we will revisit it, when we discuss adding other OGC services to owsWatch
since this part will require some Java and Javascript programming and so it
will be proper to explain it at that place. Please consider reading chapter
5: Adding other OGC services

3.4 owsWatch services

A Service in this context means a test of a running OGC service. As we
mentioned before, this file could be easily edited through the web application,
but for as a reference we shall explain the xml file structure.

The file is to be found under WEB-INF/conf/owswatch/services.xml.

A very important attribute found in the root element is service_id_sequence. This
attribute is used to assign a unique id to every newly created service. The
service ID identifies the protocol files.

The watch:Config root element contains multiple ServiceMonitor elements.
Each service monitor is responsible for testing a certain OGC service with a

deegree owsWatch v2.3 8

raumbezogene
informationssysteme

certain test (e.x. GetCapabilities or GetMap). That basically means that multiple
tests (i.e. multiple requests in our case) could run against the designated
service. This is actually very practical since sometimes there is a problem in the
configurations of a service, so that a GetCapabilities request would return a valid
result, while another request like a WMS GetMap or CSW GetRecords wouldn't.
Each service contains an ID attribute, which identifies it uniquely from other
services.

A Service contains the following elements:

➢ ACTIVE says whether the the service should be tested at all or not

➢ TIMEOUT in seconds is the maximum time for running a request. After
that a connection time out error will be produced

➢ INTERVAL indicates how often the test shall be executed

➢ ONLINERESOURCE The service of the service to send the request to

➢ SERVICENAME is the title of the test

➢ HTTPMETHOD contains the attribute type which indicates whether this is
a GET or POST HTTP request. It also contains the following Elements

➢ REQUEST name of the request like GetCapabilities and GetMap
(Note: the name should be that of an OGC service)

➢ VERSION of that service

➢ SERVICE type like WMS; WCS, etc..

3.5 Resetting owsWatch

If you would like to remove everything in owsWatch and go to a start point, follow
the following steps

1. In services.xml file, delete all elements under the root element and set the
id_sequence attribute to 0.

2. in the protocols folder delete all files except protocol2html.xsl

deegree owsWatch v2.3 9

raumbezogene
informationssysteme

4 Using owsWatch

4.1 Monitoring the services

Start owsWatch by typing its address in your browser address bar. You should
have specified the context name of owsWatch in tomcat. As an example we will
assume that you named the application owsWatch and you are running tomcat
on your local machine on port 8080, so the owsWatch address should be as
follows: http://localhost:8080/owswatch

When starting the application you will get the login page, type in your user name
and password as you specified them in the owsWatch configuration file in
Chapter 3.

After logging in you should get an application similar to the one in the next
picture.

By clicking on the radio buttons on the left hand side of the page the details on
the bottom half of the page to display the information about the clicked service
monitor.

If the HTTP request type is a GET request, you will find a link in the details named
Request Link, through which you get the exact address used to test the service;

deegree owsWatch v2.3 10

Figure 1: owsWatch main window

http://localhost:8080/owswatch

raumbezogene
informationssysteme

And if the HTTP request is of type post, you will have a text box with a the xml
request, which is sent to the service through the POST request.

Next to each service on the right hand side, you should find the following
buttons:

1- Delete button used to delete the service altogether

2- Edit button to edit the service details

3- Execute button to run the test

4- Protocol button to show the protocol (test results) of the previous tests of a
service

4.2 Adding/ editing service monitors

On the top of the page you will find an Add Service button, click on it to get a
new dialogue (The Service Manager) with the details of the new monitor.

Fill in the fields as described in the titles. The following fields exist in the add/edit
monitor dialogue:

➢ Display Name: Title of the test

➢ Service Type: WMS, WFS, etc...

➢ Version: of the Service

➢ Request Type: GetCapabilities, GetMap, etc...

deegree owsWatch v2.3 11

Figure 2: Service Manager window to add/edit tests

raumbezogene
informationssysteme

➢ Service Address: Address where the requests will be sent. It should look
something like the following: http://www.myserver/servicetype/services?

➢ Refresh Rate (in minutes): determines how oft the test should be
executed

➢ Server Timeout (in seconds): determines how long owsWatch should wait
for the service before returning a timeout error

➢ Monitor: decides whether the test should be active or not, i.e. should the
service be tested or not

➢ Http Method: Either POST or GET. If you choose POST method a Text area
will be shown where the user will be able to enter a specific xml Request.
Also there are in some cases preconfigured requests that are added
automatically, once you choose POST method, but please not this does not
apply for all cases. If you would like to add your default xml requests to a
specific test type, please consult the next chapter “Adding and modifying
test types”. In post requests there are specific text fields that corresponds
to the service and the request type; For example in WMS GetMap request,
there will be text fields like BBOX, Layers and Styles.

Also please note that sometimes POST or GET will be dimmed. This means
either that either the OGC has no specification for such a request or it is
yet not implemented in owsWatch.

Important to note that on editing a service, the fields Service Type and Request
Type will be dimmed. This is so, so that same protocol files won't contain
different test types. So if you need to change either the Service Type and/or the
Request Type of a test you will have to delete the test at hand and create a new
one, so that a new protocol file will be created.

deegree owsWatch v2.3 12

http://www.myserver/servicetype/services

raumbezogene
informationssysteme

5 Adding and modifying test types

Adding a new test type, ex. Adding GetRecords request for CSW is actually easy,
but it requires a little bit of Java knowledge, and also some HTML knowledge if
you want to add a GET Request for that service. Modifying an existing test type
on the other side would require only some HTML knowledge. So lets start with the
difficult one first and add a new service.

5.1 Adding a new test type

As explained briefly at the beginning of Chapter 3 on how the servlets work, a
request is sent from the client (the Internet browser) to the server (the servlet),
which in turn handles the request and sends the answer back to the client.

When a request is sent to the owsWatch main servlet it processes the request,
receives the answer from the server and validate it with a validator. This
validator will be the only Java class we will have to write.

The validator class must be created in the deegree2 code under
org.deegree.portal.owswatch.validator. The name of the of the validator consists
of two parts. First part is the service name (most probably all capital letters), ex.
CSW. Second part is the request name, ex. GetRecords. So according to these
examples the class name should be CSWGetRecords.java. Please note that this
convention is a must otherwise the test type can not be validated. Also this class
must inherit the class AbstractValidator.

Now if you just want to check whether the server answered with a valid xml
response and this response contains no ServiceException, then you can simply
use the method validateAnswer from the AbstarctValidator. The following piece
of code is enough for the above mentioned requirement:

public class CSWGetCapabilitiesValidator extends AbstractValidator implements
Serializable {

 @Override
 public ValidatorResponse validateAnswer(HttpMethodBase method, int
statusCode) {
 return super.validateAnswer(method, statusCode);
 }

}

But then again, you might need a more specific validator for a certain need, in
this case you'll have to have your own implementation in this class.

5.2 Adding/editing a test type. The client side of the story

First of all you have to change the configuration file according to your need. We
will continue with the example from 5.1 and suppose we want to add a CSW
GetRecords request, then we shall add the following snippet to the

deegree owsWatch v2.3 13

raumbezogene
informationssysteme

owswatch_configuration.xml within the wc:ServiceConfiguration node under
the root node:

<wc:Service type="OGC:CSW" version="2.0.2">
 <wc:ServiceRequest name="GetCapabilities" isPostable="1" isGetable="1">
 <wc:GetForm>./request_snippets/all_getCapabilities_get.html</wc:GetForm>
 <wc:PostForm>./request_snippets/csw_202_getcapabilities_post.xml</wc:PostForm>
 </wc:ServiceRequest>
 <wc:ServiceRequest name="GetRecords" isPostable="1" isGetable="1">
 <wc:GetForm>./request_snippets/csw_202_getRecords_get.html</wc:GetForm>
 <wc:RequestParameters>
 <wc:Key>outputSchema</wc:Key>
 <wc:Key>resultType</wc:Key>
 <wc:Key>outputFormat</wc:Key>
 <wc:Key>typeNames</wc:Key>
 <wc:Key>ElementSetName</wc:Key>
 </wc:RequestParameters>
 </wc:ServiceRequest>
</wc:Service>

In the attributes of the Service element there are the specific details of the test
type which are the Service and Version.

The child element for the Service is ServiceRequest, which contains its name
and also two attributes isPostable and isGetable, which determines whether the
request could be sent by POST and/or GET Requests or not.

The element GetForm contains a path to an HTML file which contains an HTML
snippet that is displayed when the user in owsWatch Service Manager chooses
the HTTPMETHOD POST.

<table border="0" cellpadding="2" cellspacing="2">
 <tbody>
 <tr>
 <td>
 Output Schema <img src="images_ccal/information.png" alt="info"
 title="Schema used to format the output" border="0" />
 </td>
 <td>
 <select id="outputSchema">
 <option value="http://www.isotc211.org/2005/gmd">
 http://www.isotc211.org/2005/gmd
 </option>
 <option value="dublincore">dublincore</option>
 <option value="http://www.opengis.net/cat/csw/2.0.2">
 http://www.opengis.net/cat/csw/2.0.2
 </option>
 </select>
 </td>
 </tr>
 <tr>
 <td>
 Result Type <img src="images_ccal/information.png"
 alt="info" title="only hits is supported at the moment" border="0" />
 </td>
 <td>
 <select id=resultType>
 <option value="hits">hits</option>
 </select>
 </td>
 </tr>
 <tr>
 <td>
 Output Format <img src="images_ccal/information.png" alt="info"

deegree owsWatch v2.3 14

http://www.opengis.net/cat/csw/2.0.2
http://www.opengis.net/cat/csw/2.0.2
http://www.isotc211.org/2005/gmd
http://www.isotc211.org/2005/gmd

raumbezogene
informationssysteme

 title="only text/xml is supported" border="0" />
 </td>
 <td>
 <select id="outputFormat">
 <option value="text/xml">text/xml</option>
 </select>
 </td>
 </tr>
 <tr>
 <td>
 Type Name <img src="images_ccal/information.png" alt="info"
 title="Type name to GetRecords of" border="0" />
 </td>
 <td>
 <input id="typeNames" name="typeNames" size="20" type="text" />
 </td>
 </tr>
 <tr>
 <td>
 Elementset Name <img src="images_ccal/information.png"
 alt="info" title="specify which properties of the outputSchema to
 include in each record" border="0" />
 </td>
 <td>
 <select id="ElementSetName">
 <option value="full">full</option>
 <option value="brief">brief</option>
 <option value="summary">summary</option>
 </select>
 </td>
 </tr>
 </tbody>
</table>

Here you can have the page anyway you like to. As long as all the parameters of
the wanted requests are available. Also note that the only HTML controllers
allowed for this mechanism are: text field, radio button and list, and that the id of
these controllers must correspond to an actual parameter in the CSW GetRecords
request. Ex. ElementSetName is the id of a list and also an actual parameter in
the GET Request.

The RequestParameter element contains the keys which shall be fetched from
the html snippet mentioned above (note: keys also correspond to the Ids of the
HTML controllers). This is just a sort of a map, which guides the javascript what to
fetch from the HTML snippet.

The PostForm element contains a path to an xml snippet that contains an actual
request of the corresponding service. This shall be used when the user chooses
POST in the HTTPMETHOD.

deegree owsWatch v2.3 15

raumbezogene
informationssysteme

Appendix A Configuration file for owsWatch

$owsWatch_home$/WEB-INF/conf/owswatch/owswatch_configuration.xml

<?xml version="1.0" encoding="UTF-8"?>
<!-- This file is part of deegree, for copyright/license information, please visit
http://www.deegree.org/license. -->
<wc:Configuration version="1.0.0"
xmlns:wc="http://www.deegree.org/owswatch/config">
 <wc:GeneralConfiguration>
 <!-- Global Refresh Rate unit is minute -->
 <wc:GlobalRefreshRate>1</wc:GlobalRefreshRate>
 <!-- PLEASE set these parameters to values suitable for your environment -->
 <wc:Users>
 <wc:User>
 <wc:UserName>SEC_ADMIN</wc:UserName><!-- DO *NOT* CHANGE THIS NAME -->
 <wc:Password>MY_SECRET_PASSWORD</wc:Password><!-- CHANGE THIS PASSWORD -->
 <wc:FirstName>AdminsFirstName</wc:FirstName>
 <wc:LastName>AdminsLastName</wc:LastName>
 <wc:Email>admin@some-place.org</wc:Email>
 <wc:Roles>admin,user</wc:Roles>
 </wc:User>
 </wc:Users>
 <!-- PLEASE set these parameters to values suitable for your environment -->
 <wc:Mail>
 <wc:mailFrom>info@some-place.org</wc:mailFrom>
 <wc:mailServer>mail.some-place.org</wc:mailServer>
 </wc:Mail>
 <wc:Location>
 <!-- Location of protocol files-->
 <wc:ProtocolLocation>./protocols</wc:ProtocolLocation>
 <!-- Location of service instace file; stores session based data of owsConfig
-->
 <wc:ServiceInstanceLocation>./services.xml</wc:ServiceInstanceLocation>
 <!-- address of the server as written in the email (for the protocol
location) -->
 <!-- PLEASE set this parameter to something suitable for your environment -->
 <wc:ServiceAddress>http://localhost:8080/owswatch</wc:ServiceAddress>
 </wc:Location>
 </wc:GeneralConfiguration>
 <wc:ServiceConfiguration>
 <!-- Service Test Interval unit is minute -->
 <wc:TestInterval>
 <wc:Value>1</wc:Value>
 <wc:Value>5</wc:Value>
 <wc:Value>10</wc:Value>
 <wc:Value>15</wc:Value>
 <wc:Value>30</wc:Value>
 <wc:Value>60</wc:Value>
 <wc:Value>120</wc:Value>
 <wc:Value>1440</wc:Value><!-- once a day -->
 <wc:Value>10080</wc:Value><!-- once a week -->
 </wc:TestInterval>
 <wc:Services>
 <wc:Service type="OGC:WMS" version="1.1.1">
 <wc:ServiceRequest name="GetCapabilities" isPostable="0" isGetable="1">
 <wc:GetForm>./request_snippets/all_getCapabilities_get.html</wc:GetForm>
 </wc:ServiceRequest>
 <wc:ServiceRequest name="GetMap" isPostable="1" isGetable="1">
 <wc:GetForm>./request_snippets/wms_111_getMap_get.html</wc:GetForm>
 <wc:RequestParameters>
 <wc:Key>WIDTH</wc:Key>
 <wc:Key>HEIGHT</wc:Key>
 <wc:Key>LAYERS</wc:Key>
 <wc:Key>STYLES</wc:Key>
 <wc:Key>TRANSPARENT</wc:Key>
 <wc:Key>FORMAT</wc:Key>
 <wc:Key>SRS</wc:Key>

deegree owsWatch v2.3 16

raumbezogene
informationssysteme

 <wc:Key>BBOX</wc:Key>
 </wc:RequestParameters>
 </wc:ServiceRequest>
 </wc:Service>
 <wc:Service type="OGC:WFS" version="1.1.0">
 <wc:ServiceRequest name="GetCapabilities" isPostable="1" isGetable="1">
 <wc:GetForm>./request_snippets/all_getCapabilities_get.html</wc:GetForm>
 <wc:PostForm>
 ./request_snippets/wfs_110_getcapabilities_post.xml
 </wc:PostForm>
 </wc:ServiceRequest>
 <wc:ServiceRequest name="GetFeature" isPostable="1" isGetable="1">
 <wc:GetForm>./request_snippets/wfs_110_getFeature_get.html</wc:GetForm>
 <wc:RequestParameters>
 <wc:Key>NAMESPACE</wc:Key>
 <wc:Key>TYPENAME</wc:Key>
 </wc:RequestParameters>
 </wc:ServiceRequest>
 </wc:Service>
 <wc:Service type="OGC:WCS" version="1.0.0">
 <wc:ServiceRequest name="GetCapabilities" isPostable="1" isGetable="1">
 <wc:GetForm>./request_snippets/all_getCapabilities_get.html</wc:GetForm>
 <wc:PostForm>
 ./request_snippets/wcs_100_getcapabilities_post.xml
 </wc:PostForm>
 </wc:ServiceRequest>
 <wc:ServiceRequest name="GetCoverage" isPostable="1" isGetable="1">
 <wc:GetForm>./request_snippets/wcs_100_getcoverage_get.html</wc:GetForm>
 <wc:RequestParameters>
 <wc:Key>coverage</wc:Key>
 <wc:Key>width</wc:Key>
 <wc:Key>height</wc:Key>
 <wc:Key>BBOX</wc:Key>
 <wc:Key>format</wc:Key>
 <wc:Key>crs</wc:Key>
 </wc:RequestParameters>
 </wc:ServiceRequest>
 </wc:Service>
 <wc:Service type="OGC:CSW" version="2.0.2">
 <wc:ServiceRequest name="GetCapabilities" isPostable="1" isGetable="1">
 <wc:GetForm>./request_snippets/all_getCapabilities_get.html</wc:GetForm>
 <wc:PostForm>
 ./request_snippets/csw_202_getcapabilities_post.xml
 </wc:PostForm>
 </wc:ServiceRequest>
 <wc:ServiceRequest name="GetRecords" isPostable="1" isGetable="1">
 <wc:GetForm>./request_snippets/csw_202_getRecords_get.html</wc:GetForm>
 <wc:RequestParameters>
 <wc:Key>outputSchema</wc:Key>
 <wc:Key>resultType</wc:Key>
 <wc:Key>outputFormat</wc:Key>
 <wc:Key>typeNames</wc:Key>
 <wc:Key>ElementSetName</wc:Key>
 </wc:RequestParameters>
 </wc:ServiceRequest>
 </wc:Service>
 <wc:Service type="OGC:SOS" version="1.0.0">
 <wc:ServiceRequest name="GetCapabilities" isPostable="1" isGetable="1">
 <wc:PostForm>./request_snippets/sos_100_getCapabilities.xml</wc:PostForm>
 </wc:ServiceRequest>
 <wc:ServiceRequest name="DescribeSensor" isPostable="1" isGetable="0">
 </wc:ServiceRequest>
 </wc:Service>
 </wc:Services>
 </wc:ServiceConfiguration>
</wc:Configuration>

deegree owsWatch v2.3 17

raumbezogene
informationssysteme

Appendix B Created Tests for the different services

$owsWatch_home$/WEB-INF/conf/owswatch/services.xml

<?xml version="1.0" encoding="UTF-8"?>
<watch:Config xmlns:watch="http://www.deegree.org/owswatch/services"
service_id_sequence="8">
 <watch:SERVICEMONITOR id="1">
 <watch:ACTIVE>false</watch:ACTIVE>
 <watch:TIMEOUT>30</watch:TIMEOUT>
 <watch:INTERVAL>1440</watch:INTERVAL>
 <watch:ONLINERESOURCE>
 http://demo.deegree.org/deegree-wms/services?
 </watch:ONLINERESOURCE>
 <watch:SERVICENAME>WMS demo Capa</watch:SERVICENAME>
 <watch:HTTPMETHOD type="GET">
 <watch:REQUEST>GetCapabilities</watch:REQUEST>
 <watch:VERSION>1.1.1</watch:VERSION>
 <watch:SERVICE>WMS</watch:SERVICE>
 </watch:HTTPMETHOD>
 </watch:SERVICEMONITOR>
 <watch:SERVICEMONITOR id="2">
 <watch:ACTIVE>false</watch:ACTIVE>
 <watch:TIMEOUT>30</watch:TIMEOUT>
 <watch:INTERVAL>1440</watch:INTERVAL>
 <watch:ONLINERESOURCE>
 http://demo.deegree.org/deegree-wfs/services?
 </watch:ONLINERESOURCE>
 <watch:SERVICENAME>WFS demo Capa</watch:SERVICENAME>
 <watch:HTTPMETHOD type="GET">
 <watch:REQUEST>GetCapabilities</watch:REQUEST>
 <watch:VERSION>1.1.0</watch:VERSION>
 <watch:SERVICE>WFS</watch:SERVICE>
 </watch:HTTPMETHOD>
 </watch:SERVICEMONITOR>
 <watch:SERVICEMONITOR id="3">
 <watch:ACTIVE>false</watch:ACTIVE>
 <watch:TIMEOUT>31</watch:TIMEOUT>
 <watch:INTERVAL>60</watch:INTERVAL>
 <watch:ONLINERESOURCE>
 http://demo.deegree.org/deegree-wcs/services?
 </watch:ONLINERESOURCE>
 <watch:SERVICENAME>WCS demo Capa</watch:SERVICENAME>
 <watch:HTTPMETHOD type="GET">
 <watch:REQUEST>GetCapabilities</watch:REQUEST>
 <watch:VERSION>1.0.0</watch:VERSION>
 <watch:SERVICE>WCS</watch:SERVICE>
 </watch:HTTPMETHOD>
 </watch:SERVICEMONITOR>
 <watch:SERVICEMONITOR id="4">
 <watch:ACTIVE>false</watch:ACTIVE>
 <watch:TIMEOUT>30</watch:TIMEOUT>
 <watch:INTERVAL>120</watch:INTERVAL>
 <watch:ONLINERESOURCE>
 http://demo.deegree.org/deegree-csw/services?
 </watch:ONLINERESOURCE>
 <watch:SERVICENAME>CSW demo Capa</watch:SERVICENAME>
 <watch:HTTPMETHOD type="GET">
 <watch:REQUEST>GetCapabilities</watch:REQUEST>
 <watch:VERSION>2.0.2</watch:VERSION>
 <watch:SERVICE>CSW</watch:SERVICE>
 </watch:HTTPMETHOD>
 </watch:SERVICEMONITOR>
 <watch:SERVICEMONITOR id="5">
 <watch:ACTIVE>false</watch:ACTIVE>
 <watch:TIMEOUT>30</watch:TIMEOUT>
 <watch:INTERVAL>60</watch:INTERVAL>

deegree owsWatch v2.3 18

http://demo.deegree.org/deegree-csw/services
http://demo.deegree.org/deegree-wcs/services
http://demo.deegree.org/deegree-wfs/services
http://demo.deegree.org/deegree-wms/services

raumbezogene
informationssysteme

 <watch:ONLINERESOURCE>
 http://demo.deegree.org/deegree-wms/services?
 </watch:ONLINERESOURCE>
 <watch:SERVICENAME>WMS demo GetMap</watch:SERVICENAME>
 <watch:HTTPMETHOD type="GET">
 <watch:SERVICE>WMS</watch:SERVICE>
 <watch:LAYERS>Counties</watch:LAYERS>
 <watch:FORMAT>image/gif</watch:FORMAT>
 <watch:HEIGHT>500</watch:HEIGHT>
 <watch:TRANSPARENT>TRUE</watch:TRANSPARENT>
 <watch:REQUEST>GetMap</watch:REQUEST>
 <watch:WIDTH>500</watch:WIDTH>
 <watch:BBOX>-191767.0,3776098.0,1044475.0,4905241.0</watch:BBOX>
 <watch:SRS>EPSG:26912</watch:SRS>
 <watch:STYLES>ColourfulCounties</watch:STYLES>
 <watch:VERSION>1.1.1</watch:VERSION>
 </watch:HTTPMETHOD>
 </watch:SERVICEMONITOR>
 <watch:SERVICEMONITOR id="6">
 <watch:ACTIVE>false</watch:ACTIVE>
 <watch:TIMEOUT>30</watch:TIMEOUT>
 <watch:INTERVAL>1440</watch:INTERVAL>
 <watch:ONLINERESOURCE>
 http://demo.deegree.org/deegree-wfs/services?
 </watch:ONLINERESOURCE>
 <watch:SERVICENAME>WFS demo GetFeature</watch:SERVICENAME>
 <watch:HTTPMETHOD type="GET">
 <watch:NAMESPACE>xmlns(app=http://www.deegree.org/app)</watch:NAMESPACE>
 <watch:REQUEST>GetFeature</watch:REQUEST>
 <watch:TYPENAME>app:StateBoundary</watch:TYPENAME>
 <watch:VERSION>1.1.0</watch:VERSION>
 <watch:SERVICE>WFS</watch:SERVICE>
 </watch:HTTPMETHOD>
 </watch:SERVICEMONITOR>
 <watch:SERVICEMONITOR id="7">
 <watch:ACTIVE>false</watch:ACTIVE>
 <watch:TIMEOUT>10</watch:TIMEOUT>
 <watch:INTERVAL>1</watch:INTERVAL>
 <watch:ONLINERESOURCE>
 http://demo.deegree.org/deegree-wcs/services?
 </watch:ONLINERESOURCE>
 <watch:SERVICENAME>WCS demo GetCoverage</watch:SERVICENAME>
 <watch:HTTPMETHOD type="GET">
 <watch:width>500</watch:width>
 <watch:SERVICE>WCS</watch:SERVICE>
 <watch:REQUEST>GetCoverage</watch:REQUEST>
 <watch:format>jpeg</watch:format>
 <watch:BBOX>420857.5,4504382.5,431410.5,4518364.5</watch:BBOX>
 <watch:crs>EPSG:26912</watch:crs>
 <watch:coverage>saltlakecity</watch:coverage>
 <watch:height>500</watch:height>
 <watch:VERSION>1.0.0</watch:VERSION>
 </watch:HTTPMETHOD>
 </watch:SERVICEMONITOR>
 <watch:SERVICEMONITOR id="8">
 <watch:ACTIVE>false</watch:ACTIVE>
 <watch:TIMEOUT>30</watch:TIMEOUT>
 <watch:INTERVAL>1</watch:INTERVAL>
 <watch:ONLINERESOURCE>
 http://demo.deegree.org/deegree-csw/services?
 </watch:ONLINERESOURCE>
 <watch:SERVICENAME>CSWGetRecords test</watch:SERVICENAME>
 <watch:HTTPMETHOD type="GET">
 <watch:ElementSetName>brief</watch:ElementSetName>
 <watch:resultType>hits</watch:resultType>
 <watch:REQUEST>GetRecords</watch:REQUEST>
 <watch:VERSION>2.0.2</watch:VERSION>
 <watch:typeNames>gmd:MD_Metadata</watch:typeNames>
 <watch:outputSchema>csw:profile</watch:outputSchema>

deegree owsWatch v2.3 19

http://demo.deegree.org/deegree-csw/services
http://demo.deegree.org/deegree-wcs/services
http://demo.deegree.org/deegree-wfs/services
http://demo.deegree.org/deegree-wms/services

raumbezogene
informationssysteme

 <watch:SERVICE>CSW</watch:SERVICE>
 <watch:outputFormat>text/xml</watch:outputFormat>
 </watch:HTTPMETHOD>
 </watch:SERVICEMONITOR>
</watch:Config>

deegree owsWatch v2.3 20

raumbezogene
informationssysteme

Appendix C Example for a web.xml file for owsWatch

$owsWatch_home$/WEB-INF/web.xml

<?xml version="1.0" encoding="UTF-8"?>
<!-- This file is part of deegree, for copyright/license information, please visit
http://www.deegree.org/license. -->
<!DOCTYPE web-app PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN"
 "http://java.sun.com/dtd/web-app_2_3.dtd">
<web-app>

<display-name>owswatch</display-name>
<description>deegree2 owswatch for OGC WebServices</description>
<servlet>

<servlet-name>owsWatch</servlet-name>
<servlet-class>org.deegree.enterprise.servlet.OWSWatch</servlet-class>
<init-param>

<param-name>owsWatchConfiguration</param-name>
<param-value>WEB-INF/conf/owswatch/owswatch_configuration.xml</param-value>

</init-param>
<load-on-startup>1</load-on-startup>

</servlet>
<servlet>

<servlet-name>wprotocol</servlet-name>
<servlet-class>org.deegree.enterprise.servlet.ProtocolServlet</servlet-class>
<init-param>

<param-name>owsWatchConfiguration</param-name>
<param-value>WEB-INF/conf/owswatch/owswatch_configuration.xml</param-value>

</init-param>
<load-on-startup>1</load-on-startup>

</servlet>
<servlet-mapping>

<servlet-name>owsWatch</servlet-name>
<url-pattern>/owsWatch</url-pattern>

</servlet-mapping>
<servlet-mapping>

<servlet-name>wprotocol</servlet-name>
<url-pattern>/wprotocol</url-pattern>

</servlet-mapping>
<welcome-file-list>

<welcome-file>owsWatch_outerframe.html</welcome-file>
</welcome-file-list>

</web-app>

deegree owsWatch v2.3 21

	1 Introduction
	2 Download/ Installation
	2.1 Prerequisites

	3 Configuration
	3.1 Servlet Configuration
	3.2 Tomcat Configurations
	3.3 owsWatch configuration
	3.3.1 ws:GeneralConfiguration
	3.3.2 ws:ServiceConfiguration

	3.4 owsWatch services
	3.5 Resetting owsWatch

	4 Using owsWatch
	4.1 Monitoring the services
	4.2 Adding/ editing service monitors

	5 Adding and modifying test types
	5.1 Adding a new test type
	5.2 Adding/editing a test type. The client side of the story
	Appendix A Configuration file for owsWatch
	Appendix B Created Tests for the different services
	Appendix C Example for a web.xml file for owsWatch

